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RELIABILITY CENTERED PREDICTION TECHNIQUE
FOR
DIAGNOSTIC MODELING AND IMPROVEMENT

1.0 INTRODUCTION

The term quality, with respect to products, is broadening from a characteristic
built into a system by the way it is manufactured to characteristics entirely inherent to
the design process -- reliability and maintainability. A product is designed to achieve a
given function and its quality is the degree to which it meets the functional
specifications. Product failure is departure from these specifications. Emphasis on the
consumer serves as the catalyst to bring about methodologies for increasing the degree
a system meets its specifications through statistics and engineering. With the steady
increase in complexity of systems, stringency of operating conditions, and positive
identification of system effectiveness requirements, more and more emphasis is being
placed on preventative maintenance, analysis, speedy repair, and replacement parts [4].
These represent a major portion of system operating costs especially when each minute
out of service is going to result in considerable financial loss for any high revenue-
earning industry.

Diagnosability, the measure of the ease of isolating the cause of a loss of
functionality, can strongly influence product quality through reliability and
maintainability. Poor diagnosability can increase the cost of a product through
increased maintenance down time which, in turn, decreases quality because a product,
in general, cannot provide its intended function during this time [11]. Improving
diagnosability not only eases the diagnosis process--minimizing the total time of
diagnosis, but the total cost of diagnosis is decreased in proportion to the above factors

as well as in relation to the decrease in unjustified removals (removal of a suspect

component later found to be in working order) of each Line Replaceable Unit

(LRU)/Least Replaceable Assembly (LRA).




The cost of unjustified removals on the 747-400 aircraft was over $100 per
flight hour according to the Reliability and Maintainability Department at the Boeing
Aircraft Company, one-third of which were mechanical components as opposed to
electronic [28]. These costs demand diagnosability metrics and methodologies to
increase the quality of any mechanical system of today. Previous studies (Clark,1993
and Wong 1994) present general methodologies which provide insight into the
diagnosability of systems and suggest areas for design improvement, but focus mainly
in the abstract. Previous work fails to address the issue of cost analysis of current and
modified designs in a tangible way. No useful life cycle cost analysis can be made
based on previous metrics.

The objective of this research is to produce methodologies for the evaluation of
diagnosability, a subset of maintainability, in the design and redesign phase of a
product. A secondary objective is to determine if pigs can fly and if the methane they
produce can be harmnessed as an afterburner. A metric common to all mechanical
systems enabling a prediction of the costs and, in turn, the quality of the product is
developed. This metric can be used to accurately predict not only current, but
modified system life cycle costs based on reliability and maintainability, or specifically,
diagnosability. An analysis is presented of a real system that has experienced
diagnosability problems and has iterated through redesign phases. The metric evaluated
is Mean Time Between Unscheduled Removals (MTBUR) -- a function of both system
structure and LRU failure rates.

The Bleed Air Control System (BACS) on the Boeing 737-300,400,500 aircraft
was chosen as the analysis testbed for several reasons. Previous work (Clark,1993 and
Wong,1994) utilized the 747-400 BACS, a subsequent iteration of the 737 BACS, so
analytical comparisons can be drawn. The 737 BACS has a complete Failure Modes
and Effects Analysis (FMEA) available which can be modeled through a Fault Tree
Analysis (FTA). The system has a diagnosability problem evident in a large number of
unjustifiable removals of LRUs. Also, the determining factor, cost, can be arrived at

since a complete life cycle costing mechanism is in place for the system. The objective




is to decrease cost by manipulating indication-LRU relationships without increasing
complexity. |

The following section presents a brief background of reliability and
maintainability engineering laying the groundwork for diagnosability analysis. Next,
the BACS is described and modeled stating all analysis assumptions. The method and
metrics for prediction and design are derived using reliability mathematics for
quantitative diagnosability analysis. The modeling equation arrived at is tested on the
original design and, based on redesign for diagnosability potential, modifications are
made to the system. The modifications range from dividing primary LRU functions
differently to merely changing sensor types. The modified systems are then re-
evaluated on the basis of diagnosability and ultimately cost. Finally, conclusions are
drawn from the diagnosability analysis, recommendations are made for system

changes, and direction for future research is laid out.




2.0 BACKGROUND

The cost of quality, from the consumer point of view, is mostly absorbed by the
initial investment of a product. Poor diagnosability, though, greatly disperses that cost
over the entire product lifetime due to excessive maintenance time. Instead of
improving troubleshooting guides for diagnostic nightmares as history records,
reliability engineering is recently beginning to focus on the problem itself--the design
of the product. |

Design for diagnosability incorporates maintainability principles to ease the
burden of the consumer in terms of product life. Also, any “consumer” who comes
into contact with the product such as maintenance technicians and test equipment
operators benefit from diagnosability improvements in terms of analysis.

The entire product life must be considered when determining ownership cost,
that is, how much you own it versus how much it owns you. To minimize the latter,
competing product designs can be compared via life cycle costing mechanisms to
determine the best design and hence the best product.

This section describes the terms necessary to grasp the depth of diagnosability
engineering. Parameters discussed include cost, time, Reliability and Maintainability
(RAM), and the interrelationships therein. Analysis and design for diagnosability are

reviewed along with scientific assumptions and selection of competing designs.

2.1 Diagnosability & Cost

A group of engineers questioned the wisdom of a co-worker who had just
purchased an expensive car. “How can you justify that price?” they asked. “Well,” the
co-worker replied, “Consumer Reports says the car has a low failure rate, low cost of
maintenance, and an excellent safety rating so the cost of insurance is much lower.

When you factor in those considerations, this car is slightly less expensive to own”




[13]. The co-worker’s answer is a fundamental message of analyzing life cycle costs.
Life cycle cost is simply the cost of reliable operation of a product over its lifetime --
from concept to recycling. Many feel life cycle costing is too imprecise to be useful
and they are right in an absolute sense, but not in a relative sense. Life cycle costing
provides valuable and useful comparisons between system architectures. Depending on
failure event costs and costs of lost production, the optimal system can be designed or
chosen from a set of limited concepts or choices [13]. Several costs in a product’s life

cycle are impacted, either directly or indirectly, by diagnosability.

2.1.1 Start-up costs

Start-up costs include initial purchase or manufacturing costs, installation costs,
and set-up costs. Initial purchase costs are obtained from a price list or quotation of
competing components or products. Installation and set-up costs can be estimated or
obtained by quotation (these costs can be minimized by standardization of parts and
components). After the system installation and set-up is complete it needs to be tested
for design errors using troubleshooting tools. Diagnostics is practically synonymous
with fault finding and troubleshooting. If the system variables can be logically forced
to specific values, portions of the design can be isolated and tested in a systematic way
[13]. Costs are lowered because troubleshooting is easier, i.e., diagnostic time and
required technician skill are lowered.

Many companies think the job is complete after start-up and troubleshooting are
complete. “Final cost reports” are even issued at this time, but in reality system costs

are just beginning [13].




2.1.2 Time costs

The customer, and therefore the designer, is very interested in certain items of
time with respect to their product. Time equals cost in just about every aspect of the
term. The time of preventative maintenance, time of corrective maintenance, and time
of system outage or degraded service are all tied to potential revenue loss. These
factors are determined by certain variables including the frequency of failure, the time
to repair, the cost of manpower and maintenance equipment, the quantity and cost of
spares, the transportation of manpower and spares, and finally, the degree of skill
required by the maintenance personnel -- to mention a few [4]. Diagnosability is
embedded in most of these time factors and can be presented in terms of

maintainability, reliability, and availability.

2.1.2.1 Definitions

The definition of maintainability is the “probability that a device that has failed
will be restored to operational effectiveness within a given period of time when the
maintenance action is performed in accordance with prescribed procedures” [4]. This
is usually expressed in terms of the parameter MTTR (mean time to repair) or the
repair rate:

u=1/ MTTR. 1)

Another closely related term is MTBF (mean time between failures), 6, which
defines reliability as the “probability that a system will operate for some determined
period of time, under the working conditions for which it was designed” [4]. This
term is most often expressed as the failure rate:

A =1/ MIBF Q)

This definition ignores the possibility of false alarms which could be incorporated as

unjustified failures:
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where P(f) is the probability of an actual failure and P(fa) is the probability of a false
alarm [1].

The parameter availability combines these two to define the portion of time a
system is available for use in the formula

6/6+ MTTR ©)

These values are included in a major portion of life cycle cost analysis and are

interrelated as shown in figure 1.

RELILBILITY MAINTAINABILITY

Wifh
dund v
Y redundancy % { N

£Lsupplier

Foster
preventive
Preventive Maoapowrer ond
mointenonce Test equipment corrective
reduces number etc reduces mointengace
of failures MTTR reduces costs

MAINTENANCE COSTS ! ?_]-'-—'f_consume"

Figure 1. Interrelationship between cost analysis parameters [4]

MTTR can be subdivided into several more parts including diagnosis time,
replacement time, transportation time, etc. of which the first two are considered active
and directly influenced by and the responsibility of the design engineer. The latter is
included under the passive heading including logistics and administration. The cost of
achieving a certain MTTR or maintainability objective consists of the costs of design,
manufacturing, test equipment, manuals, etc. and trade-offs exist involving each of

these. One must choose between such factors as quantity and quality of test equipment,




detailed design and LRA/LRU, extensive training of maintenance personnel and
detailed maintenance manuals, etc. The choice of these factors can improve
maintainability, but for a price. Improved diagnosability, and therefore MTTR, may
increase the selling price of the product, but the operating costs will decrease. As
shown in figure 2, life cycle costs decrease to a point with improved diagnosability,

but increase again showing a point of diminishing returns on the design effort [4].

Totol (determines price)
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Figure 2. Price versus availability [4]

2.1.2.2 Downtime

Downtime, in general, is not totally dependent on diagnosability and MTTR [4].
The downtime of a system can be influenced by spares or LRUs. If the system
function is restored by the insertion of a LRU then the time cost associated with
diagnosability, and hence MTTR, is only a factor of manpower costs and possibly the
availability of spares (which the repaired parts may become). Redundancy in designs
can also have the same effect as spares in system downtime, though the statistics of
placement greatly influences the success as will be seen shortly.

System downtime, like MTTR, can be divided up into several active elements
including time to realization, access time, diagnosis time, replacement time, checkout
time, and alignment time [4]. These active elements are directly related to

diagnosability. Time to realization depends on system monitoring with diagnostic




techniques, alarms, or sensors. Access and replacement time depend on the human
factors side of diagnosability including the removal of covers and shields as well as
choice of the LRU and its connectors, but most importantly, how the system is
structured or laid out. One study maintains that components with known high failure
frequencies should be grouped together for easy removal [20]. Diagnosis, checkout,
and alignment time are not only a function of the warm-up of test equipment, data
collected, tools and analysis used ,but to a large degree, the extent of the instructions
supplied [4].

Tt should be noted that the active and passive elements, such as logistics and
administration, are correlated to a degree since as active time increases there is a
greater incidence of rest periods, logistic delays, and administrative delays [4]. The
probability of incorrect diagnosis also increases proportionally with time. The domino
effect can be assimilated here because incorrect diagnosis leads to replacement of a
module or LRU which is not faulty which leads to the possibility of inducing further

faults which leads to longer downtime. Figure 3 depicts the elements and relationships

of downtime.
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Since a system will have as many failure rates as there are modes of failure, the
diagnostic time or MTTR will have a similar multiplier. The overall weighted MTTR

can be expressed as

=t Y
>4
i=1

where x equals the failure modes of a system each characterized by a failure rate A,

i=1

®)

and y equals the repair actions observed for each mode having repair time 1/ K, [4].

One Author incorporates time to detect a fault and fault correction time based
on order of ambiguity groups, or LRUs, of a system to arrive at MTTR:
MTIR = TDET+ZTFCJ. 6)
j=1
Where TFCj is the average fault correction time of each ambiguity group and TDET is
the average time required to detect a fault expressed as

TDET = i%’-[FFDjFD 74, +(1- FFD, )FDTU | @)
j=1

S

given I as the number of LRUs, A, is the failure rate of the jth replaceable unit, A, is
the sum of all 4;’s, FFD is the fraction of fauits detectable, FDTA is the average time

to detect a fault by acceptable maintenance procedures, and FDTU is the average time
to detect a fault by other than acceptable maintenance procedures--each for the jth
replaceable LRU [8].

Previous research (Wong,1994) introduces active diagnostic time, a subset of
MTTR, as the summation of time to perform each diagnostic task expressed by the
following:

AD=(t1)(K) +(t2)(K) +(t3)(k) ®)
where tl is the time required to detect failure, t2 is the time required to locate all
candidates, t3 is the time required to isolate candidates to one candidate. which causes

failure, and k is an experience correction factor [31]. The variables in equations 5
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through 8 are found using historical data, or if not available, a best guess must be made
using available knowledge and experience. Regardless of the specific parameter, if the
mathematical model of a statistical distribution is known then it is possible to state a
probability for a value of that quantity to fall within given limits [4]. Once the
estimated time is calculated the costs can be extrapolated. For competing systems or

designs, the lowest cost system would be preferred and easily determined.

2.1.3 RAM Costs

The cost of RAM (reliability, availability, and maintainability) is possibly best
measured by the cost of its absence which may include the absence of the customer.
One such customer, who possibly enhances the definition, promoted a high view of
RAM as can be noted in an old poem by Oliver Wendall Holmes, Sr. called The
Deacon’s Masterpiece, or the Wonderful One-Hoss-Shay:

Now in building chaises, I tell yu what,
There is always somewhere a weakest spot,--
In hub, tire, felloe, in spring or thill,

In panel, or crossbar, or floor, or sill,

In screw, bolt, thoroughbrace,--lurking still,
Find it somewhere you must and will. --
Above or below, or within or without,--

And that’s the reason, beyound a doubt,
Achaise breaks down but doesn’t wear out.

But the Deacon swore (as Deacons do,

With an “I dew vum, ” or an “I tell yeou, ”)

He would build one shay to beat the taown

‘n’ the keounty ‘n’ all the kentry raoun’,

It should be so built that it couldn’ break daown,
--"Fur,” said the Deacon, “‘t’s mighty plain
Thut the weades’ place mus’ stan’ the strain;

‘n’ the way t’ fix it, uz I maintain,

Is only jest

T’ make that place uz strong uz the rest” [21].
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Such a reliable device, horse-drawn chaise or not, is one “that continues to
perform its intended function throughout its intended useful lifetime, regardless of
adverse operating conditions” [21]. Of course, in view of cost effectiveness and the
consumer market of today, most designers would feel the Deacon’s masterpiece was
grossly overdesigned to last a century without a breakdown -- ten years would be more

than adequate. Yet, centuries ago the RAM concept was more than just thought about.

2.1.3.1 History

The advent of the machine age at the beginning of the nineteenth century began
to see the standardization of parts and with the rapid evolution of analytical prediction
techniques like stress analysis and transform theories, the means for reliability and
maintainability (including diagnosability) were gaining ground. The great breakthrough
for reliability, however, did not arrive until the late 1950’s when a popular customer
was identified--the U.S. military [21]. The cost of the absence of reliability with
respect to major missile weapon systems could be measured in lives. Though the idea
of reliability by redundancy was recognized during the second world war by the use of
multi-engine over single-engine aircraft designs, no methodology in the design process
resulted [21].

Maintainability can be traced back to the Industrial Revolution where multitudes
worked in mass assembly lines and designers developed guidelines in response to the
demands of the mechanics of the products. It was during this time that the most
fundamental maintainability principles originated [21].

The idea of diagnosability with respect to RAM, though always considered by
means of troubleshooting guides and fault finding techniques, was not molded into a
methodology for design until the last several years and is still in its fledgling stage. As
a starting point, several acceptable techniques for designing for diagnosability, and

hence quality, can be gleaned from concepts learned from RAM programs.
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2.1.3.2 Programs and Processes

Several major companies such as M&M Mars, Firestone, General Motors, Intel,
and Caterpillar have applied RAM programs and processes to save millions of dollars.
One company estimates that a 2 percent reduction in downtime saved $36 million over
a 5 year period [21].

The programs and processes developed for RAM involve certain activities which
can be incorporated into a company’s product development plan (PDP) and include:
deciding on objectives, which may be fixed by contract; the training of personnel;
statements of reliability such as failure rate and probability; stress and failure analysis
like the fault tree; maintainability analysis including analysis of maintenance
requirements which are strongly influenced by test equipment, manuals, and choice of
LRUs; design review -- never to be conducted by someone involved in the design;
design trade-offs as seen in figure 2; cost recording; accurate and detailed failure
reporting to be used for maintenance feedback and analysis of data; prototype testing
and RAM prediction; controlling manufacturing to ensure tolerances are adhered to;
documentation through operating instructions and maintenance manuals; spares
provisioning; burn-in or pre-stressing; and finally, the demonstration of RAM by the
use of statistical sample testing [4]. The US Military Standard 470 provides a formal
guide to producing a program that includes all of the above.

A RAM program can be further broken down into the two categories of existing
equipment and new equipment. Both have many activities in common such as
personnel training and analysis techniques.

Personnel training should involve teaching the designers to work with RAM
program experts during the design phase rather than having the experts demand design
changes. Also, technicians and any maintenance personnel that may come in contact
with the product should be included in the design process and treated as customers.

Existing equipment is equipment that has already been procured and major
design changes are usually out of the question. By analyzing life cyclé costs with

respect to RAM, sometimes it may be cheaper to scrap the old equipment and design

o
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new. Following the famous 20/80 principle which says that about 20 percent of the
causes contribute to 80 percent of the losses (or downtime in this case) leads us to
analysis techniques like process analysis maps or fault trees. A fault tree is a model
that graphically and logically represents various combinations of possible events based
on a functional analysis to find the causes. A typical fault tree example is shown in

figure 4 outlining the possible faults of a pattern recognition system.
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Figure 4. Fault tree analysis for a pattern recognition system [24]

The technicians and maintenance personnel should be trained to accomplish fault
trees or some other form of fault analysis since they interact with the product in
possibly more ways than the consumer. Feedback from the fault trees can then be used
to identify the 20 percent causes and determine if their minimization can be
accomplished or if redesign may be necessafy.

New equipment has more latitude for change, yet the same tools can be used for
analysis. If extensive design changes are not desirable or feasible due to functionality
or production constraints, then minimization of fault effects can be analyzed with the

use of tools such as a failure modes and effects analysis (FMEA). This “bottom—ﬁp”

22
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approach to analyzing a design can impart the knowledge of the effect of each fault
found in the fault tree analysis and this effect can then be minimized by the use of
redundancy or component interface selection [23]. One author insists that “no
maintainability test for complex equipment should be made without the use of FMEA”
[24] since the failure modc;s revealed will likely result in downtime. The FMEA for

the pattern recognition system of figure 4 is shown in table 1.

Failure mode Causes Effects Criticatity Design action Fault verificaton RCM action
Optics ~ Ambient Permanent A Provide tan Wam of Chack fan tolerances
malfunction heat deformation tan failure avery 2 months
Dirt Erroneous s Add filter Not Replace filter monthly
. output required
Ciccuit High Parameters o Quality Not Install software to
parameters leakage out of control critical required monitor parameters
drift current components
Dirtcn fntermuttent i1s Conformal Not Not required
circunt perormance coat required
Hign Degraded s Derate parts Not Use infrared inspection
juncuon perormance below 50% required
temzeraire
X-Y table Supzier False A Perform FMEA To be To be determined
innaccurate o2sen output with supplier determined
False A Sotware Not Check eccentricity
output controt required during routine
maintenance

Table 1. FMEA for a pattern recognition system [24]

The FMEA can include items such as fault probability and frequency to affect
the weighting factor of each fault. These items are obtained from maintenance data for
existing equipment, but may be solely from analyst judgment for new equipment --
especially before prototype testing.

The minimization of downtime of most systems can many times be affected by
the availability of spares, or spares provisioning. Statistical techniques based on the
results of the FMEA can be employed to predict the optimum number of spares for a

typical fault. For instance, if the failure rate of a part is known or predicted, a
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particular assurance of having a part on hand can be obtained. Since failure rate is
assumed constant, the probability of failure follows a Poisson distribution with a certain
mean value. From the mean value the number of spares required is obtained to fulfill
the designated assurance [9].

Specific fault areas to improve diagnosability are pointed out with these analysis
techniques. These simple analysis tools can hold the power of millions of dollars or
even lives, but, of course, management must listen to the technicians, maintenance

personnel, and other analysts in order to benefit from their ideas.

2.2 Diagnosability & Analysis

If the statistical distribution of failures is known for a given system then the
probability of failure up to any suggested replacement time can be assessed. If a failure
time due to wearout is chosen then the time at which replacement should take place can
be calculated [4]. The best defense against interruptions and excessive downtime is to
prevent equipment from failing while it is “on duty”. The analysis techniques

V. discussed in section 2.1.3 are invaluable, yet, some equipment always seems
determined to prove that statistics are only averages [6] or even best guesses. This
equipment seems to test the validity of the statistics in which the analysis tools are
based. This raises questions about the underlying assumptions made for each statistical
tool, the methods of recording data for analysis, and even specific fault-finding

methodologies.

2.2.1 Analysis & Assumptions

The promise of modern statistics is that it provides not only a precise summary
of the conclusions drawn from an evaluation, but also a reliable prediction for future
tests [14]. It is, of course, impossible for statistics to prove that something is true;

only that the preponderance of data support that conclusion [29]. As with any model,
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calculated assumptions must be made to either simplify the problem and/or fill in the
unknown characteristics of a phenomena. It can be expected, to a minimum degree
hopefully, that actual behavior will not follow the predicted statistical model accurately
for a given period of the life cycle. The causes behind this variance can be attributed
to poor assumptions due to either lack of pertinent information or lack of

understanding of statistical processes, or both.

2.2.1.1 Lack of information

Statistical analysis is not new. It has been applied to a wide variety of
engineering problems since the early 1970’s. Methods employed were studied up to
200 years ago like the Guassian distribution, named after Karl Guass, more readily
known as the normal distribution which adequately describes many mechanical
components[2]. Another popular technique was proposed by Waloddi Weibull in 1951
and is known as the Weibull distribution -- highly acclaimed for its simplicity and
versatilify. The log-normal distribution is also sometimes used to model system
behavior since in many applications, especially RAM, the data may not fit the normal
distribution. Figure 5 shows that the three distributions have similar behavior near the
center, but very different behavior near the “tails” [2].

Techniques for determining which curve is a best fit for particular sample data
can be little more than guess work since the probability of a sample lying in the center
portion of the curve (the mean plus or minus two standard deviations) is 95.45 percent
[14]. Since many engineering risk assessments quote a “six nine” (0.999999)
reliability based on a confidence level that assumes the form of the underlying
population distribution level is known, applying the wrong distribution will prove the
“six nine” reliability a gross exaggeration. Thus, the choice of a wrong distribution
could result in an overestimation of structural reliability or the calculating of an
unrealistically high potential for disaster {2] -- both compounding the problem of
diagnosability. ‘
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Figure 5. Lognormal, normal, and Weibull distributions [2]

Another source of error due to lack of information is unanticipated potential
failure modes. The historical account of an Eastern Airlines flight illustrates this error
graphically:

On May 35, 1983, as an Eastern Airlines L-1011 began its decent
into Nassau following a 47 minute flight from Miami, the No. 2 engine
was shut down because of low oil pressure. After turning to head for
Eastern’s maintenance base in Miami, the No. 3 engine failed, followed
shortly by the No. 1 engine. The L-1011 had experienced a #riple
engine failure!™ [2]. Fortunately there was a happy ending. The No. 2
engine was restarted at an altitude of 3,500 feet and the plane made a
successful landing in Miami [2].

Failure of a single engine is unusual, failure of two is even more unexpected,
and the probability of all three failing should be infinitesimally small -- or, was the

probability grossly underestimated? The National Transportation and Safety Board

determined the triple engine failure occurred because all three engines had magnetic
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chip detectors installed without “O” ring seals. Loss of oil caused the engines to
overheat and stop running. All three were installed on the same night, by the same
two-man team on a late-night shift under poor lighting conditions. Thus, the
probability of installing three incorrectly, in this case, was the same as the probability
of installing one incorrectly. The omission of an “O” ring seal was unanticipated and

would likely not have been included in a prior risk assessment or diagnosability target

[2].

2.2.1.2 Lack of Understanding

Some misconceptions are difficult to avoid as can be illustrated with the
previous example. For instance, incorrectly applying the rules of probability could
easily result in an overestimated reliability. The probability of the failure of all three
engines on the same flight would likely have been incorrectly computed by
“multiplying probabilities” of individual failures, assuming independence [2]. This
assumption had devastating results. Difficulties like these make probabilistic life
analysis and diagnosability alluringly simple in principle, yet unfortunately vulnerable
to misuse and error.

Minimization of misconceptions about statistical probabilities can be easily
accomplished with some study and application. Many misconceptions are due to
misleading terminology such as “bathtub curve” and “failure rate”.

Reliability can also be expressed in the mathematical terms:

R=e™™ ‘ )
Where R is the probability of the item completing the specified mission successfully, e
is the natural logarithmic base, t is the duration of the mission, and A is the failure rate
of the item throughout the period [21]. A special case of the Weibull distribution,
equation 9 represents the exponential distribution. Acceptance of this equation

presupposes a subordinate assumption that failure rate (A) is constant over the
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product’s entire operating life cycle. Testing and experience have proven that failure
rate versus life cycle more closely approximates a “bathtub curve” which can model the
reliability characteristic of a generic piece-part type, but not of an entire system which
some analysts profess. Even if an exponential distribution is assumed, as often is the
case for electrical and some mechanical parts, the reliability bathtub curves show the

useful life can vary extensively from the statistical assumption (see figure 6).

Falluro rate ——————»
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Figure 6. Bathtub curves for electrical vs. mechanical parts [7]

Additional considerations often neglected for this statistical model include
changing environmental stresses, variations in tooling, and other manufacturing
influences. Thus, instead of a simple curve, the reliability might be better depicted
with these factors in mind as shown in figure 7.

Furthermore, most analysts do not realize that rhe bathtub curve is applied to
both repairable and nonrepairable systems. This assumption implying that the Force of
mortality (FOM) for parts and the rate olf occurrence of failures (ROCOF) or failure
rate for a repairable system are equivalent is terribly wrong {3]. Therefore, two

bathtub curves should be represented as shown in figures 8 and 9.
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Figure 7. Bathtub curve reflecting environmental and manufacturing stresses [21]
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Figure 8. Bathtub curve for parts [3]
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Figure 9. Bathtub curve for a repairable system [3]

Other false assumptions due to lack of understanding include, but are not

limited to: assuming a linear plot of failures versus time on linear paper implies a
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homogeneous Poisson Process; reordering data with respect to magnitude instead of
chronological order; assuming overhauls are equivalent to renewals; and, confusing
“reliability with repair” for repairable systems [3]. All, either directly or indirectly,
affect system diagnosability by introduc;ing errors to the system model.

Since the process of probabilistic analysis has been introduced considering
statistical distributions of all (known) contributing factors, the key question remains --
“What constitutes acceptable risk?”.  Considering the possible errors in risk
assessment, the pilots of the Eastern L-1011 would likely say the “six nine” reliability
was not acceptable. However, this is the risk that they (unknowingly?) accept every
time they climb into an aircraft [29].

2.2.2 Analysis & Recording Data

Data used for analysis can be obtained either from tests on prototype or
production models or from the field. In either case, some means of accurate recording
of this data must be available or errors will result in analysis conclusions. Most
methods of recording data involve human interface with extensive forms such as the
reliability centered maintenance form located in appendix A. Since the data acquisition
depends on persons rather than equipment, errors often occur due to omissions and
misinterpretations which can be traced back to motivation, training, and diagnosability.

If the maintenance technician can see no purpose in recording the information,
especially under poor working conditions, it is likely that items will be omitted or
recorded wrong. Once a failure report has left the initial recorder the possibility of
verification is very much reduced, especially due to the high cost of man-hours. These
conditions increase the probability of recording a failure when no failure exists (a
non-failure). The testing and replacing of no-fault items or LRUs because of
convenience or previous experience is a likely cause for this. Also, when multiple
faults occur, a technician may record a secondary failure as a primary failure. All of

these errors in recording cause artificial inflation of failure rate data. Training and
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motivation through knowledge can inhibit these errors immensely, yet can never totally
remove incidents of incorrect failure recording [4]. Improved diagnosability can limit,

if not eliminate, replacing no-fault items as well as chronological recording errors.

2.2.3 Analysis & Methodologies

Several popular diagnostic analysis testing techniques have emerged based on
particular environments. Especially with the advent of the digital computer, these
techniques have reduced many sources of error, but are not totally without
disadvantages. To minimize errors, testing needs to follow certain methodologies as

well as use the best analysis equipment for the particular application.

2.2.3.1 Testing procedure

Several papers have been written addressing the subject of element, or LRU,
checking order. With optimality based on cost, all analyses converge on the following
general principle: check first the LRU that minimizes

1q/p (10)
where 1 is the testing cost, q is the probability that the LRU is good, and p is the
probability that the LRU is bad [30]. Using this procedure can optimize diagnosability,
yet, once again, statistics are only averages based on historical data at best.

Simulated natural and induced environmental tests have been developed
scientifically or through trial and error to provide laboratory conditions comparable to
actual field test conditions if field data is not available. The procedure for diagnostics
remains the same for both conditions, yet checklists have been developed to specify and
calibrate the transducers used and minimize unwanted “noise” in the test environment.

Checklists have been developed for several diagnostic tests including
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temperature, humidity, mechanical shock, vibration, sunshine, dust, rain, and explosive
environments. For example, the checklist of specification considerations for a
temperature test include: the test temperatures and their tolerances; exposure time and
its tolerance (10% of duration recommended); protection against moisture condensation
and frost; functionality desired; relative humidity; the number of sensors and their
locations; and, the initial temperature of the product at the start of the test [14].

The transducers used for instrumentation in the tests need to be considered
according to the specifications required. For instance, the decision to use a
piezoelectric instead of a strain gauge accelerometer for a mechanical shock test

involves required specifications such as sensitivity, linearity, and frequency response.

2.2.3.2 Testing equipment

The actual diagnostic equipment used today has been greatly influenced by the
evolution of the digital computer to keep up with the advances of the products they are
diagnosing. The advent of analysis techniques such as the FFT (fast Fourier transform)
have also revolutionized diagnosability as well as BITE (built in test equipment)
technology. An example lies in the arena of rotating machinery, but can be applied to
any system. Traditionally, vibration monitoring and protection equipment has been
totally separate from the diagnostic and data acquisition equipment.  Multiple
microprocessors now virtually eliminate this barrier and can answer diégnostic
questions in “real time”. Questions include: is the data believable? to what accuracy?;
can I continue to run the machine? for how long? at what speed?; what happened to the
machine?; when, where, and how did the malfunction occur?; for how long did it last?;
what was the sequence and correlation of events?; what is the past history?; what limits
were exceeded?; and, who can help? To answer these questions microprocessors
calculate peak-to-peak vibration and display it on bar graphs, perform DFT (discrete
Fourier transform), compare vibrations against stored alarm limits, trip defeat functions

for calibration and maintenance, calculate time to danger, measure transducer gap
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voltages, perform self tests, and produce buffered output for test instruments. This is
all accomplished because of microprocessor’s enhanced speed due to: parallel channel
monitoring; positive capture since connection is permanent; additional data availability
such as time to danger; flexibility due to programming for different functions;
reliability since downstream failures do not impact upstream functions; compatibility
from the digital form of data; and, self testing capabilities [15].

With the discovery of the FFT (fast Fourier transform), process time for time to
frequency transformations has been exponentially diminished so “real time” diagnosis
of systems can be accomplished. Amplification of defects in rotational machinery is
possible using the FFT on a logarithmic scale or cepstrum analysis (a variant of the
FFT). These discoveries allow tracking of extremely slow changes in the transfer
function such as crack growth development [25]. A typical frequency-based
troubleshooting checklist is located in appendix A.

Malfunctions, such as bearing deterioration, can be discovered using various
equipment with advantages and disadvantages influencing error and cost for each. For
instance, if the human ear is the only diagnostic source for detecting a malfunction, the
time to failure will likely be rather short, but the cost of equipment will be quite small.
If a stethoscope is added, the costs rise to approximately $300, but detection is sooner.
The errors involved in any sound method include subjectivity, inaccuracy in trend
analysis because of no hard copy readings, and lack of severity detection. Temperature
methods, such as portable pyrometers or permanently installed thermocouples, are
relatively inexpensive, but the detection is often too late to replace the malfunctioning
part during scheduled downtime and the analysis is often in error since temperature
varies with load. Vibration methods are generally very expensive (real time analyzers
start at $8500) yet have a proven track record of early detection if used properly (see
figure A2 in the appendix). Lack of training can result in error with the vibration
method [4]. Still other methods include ultrasonic, shock pulse, spike energy, acoustic
emission, and fiber optics -- each with probable sources of error and definite

application strengths.
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In order to prevent systems from proving that statistics are only averages and
failing when “on duty”, choices are available to minimize the potential for error
through diagnosability. Assumptions in statistical methods, recording techniques, and

methodologies including testing and equipment are all variables to optimize.

2.3 Diagnosability & Design

Diagnostic equipment and tools available today, in general, are limited to after-
the-design add-ons like BITE technology (which add weight and volume) or
maintenance personnel tools (which many times require system shutdown for analysis).
Since the quality of a product is determined, to a great extent, during the design phase
rather than during production [11] and if both cost and analysis are functions of
diagnosability, design techniques should be explored to maximize the diagnosability

inherent in the product -- keeping add-on diagnostic systems to a minimum.

2.3.1 Traditional Design

The cost of the unjustifiable removals on the 747 noted earlier was $100 per
flight hour, “a cost equivalent to adding 8 tons of dead weight to the aircraft,” directly
attributed to poor diagnosability with respect to the components that were removed
[11]. Traditional diagnosability has been an afterthought of product development.

Problems in both electronic and mechanical systems are addressed by adding
sensor based systems such as automatic test equipment (ATE) and BITE [11]. These
require communication devices called networks as a means for telemetry to correlate
and analyze data for diagnostics from various different parts of the system where
“smart sensors”, like those discussed in section 2.2.3, monitor target parameters.

These add-ons not only add weight and volume (severely detrimental to businesses like
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Boeing), but complexity as well -- likely reducing reliability due to the diagnosability
equipment itself failing.

Another common approach, used alone or in conjunction with add-on
equipment, is removing and servicing equipment on a cyclical basis based on mean
time between failures and other trend analysis statistics [6]. |

One reason fault diagnosis is not considered explicitly until late in the
production process is that diagnosability is difficult for the designer to consider without
actual maintenance data [11]. Certainly, there must be some way to design for
reliability through diagnosability without overdesigning as with the historically noted
One-Hoss-Shay.

2.3.2 Diagnosability Factors in Design

Several factors can be used to compare competing designs with respect to
diagnosability and decide what parts of a system could be improved in the design
phase. Included in theses factors are the placement of parts based on function (and
reliability if known), the placement and choice of sensors, and the redundancy of
sensing operations and LRUs. _

Based on equation (8) of section 2.1.2, diagnosability time is directly
proportional to the time until initial detection, the average number of candidates for a
given failure, and the distinguishability between the candidates. The time until initial
detection is a function of the detection equipment of the particular LRU and can be
modified using techniques discussed in section 2.2.3 based on the criticality of the part
and its probability of failure.

From previous work (Clark, 1993) the average number of candidates for a given

failure can be expressed as

E:(l/n)ic, (11)
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where ¢, is the number of candidates for each failure indication, i, summed over the
total number of different failure indications, n [11]. It has been said that the maximum
number of candidates for a particular failure is a measure of the ambiguity of a system,
so LRUs with a high c may confound diagnosis -- especially if the same LRUs have a
high probability of failure. Decreasing ¢ can be accomplished by placing particular
units in ;iifferent locations or changing sensor dependencies.

The measure of distinguishability can be expressed as

i(l/ci-l/c)

b= 12

" where n is the total number of possible indicated failures, c is the total number of
candidates in the system, and c, is the number of candidates for each failure, i {11].

This equation shows that a distinguishability of one, or 100%, means that every
possible indicated failure would have only one candidate and diagnosis is trivial, where
as a distinguishability of zero means that for any failure, all LRUs in a system are
candidates, i.e., poor diagnosability [11]. Improving D can be accomplished by, once
again, decreasing the total number of candidates and/or decreasing the complexity of
the total system.

A popularized factor for increasing the reliability of a system is the use of
parallel linked redundancy of LRUs versus series linked components. By inspection,
systems with LRUs linked in series have a failure rate equal to the sum of the failure
rates of each LRU. Parallel linked systems decrease the failure rate. For example, the
mean time between failures for an equivalent system with two LRUs in parallel can be
expressed as

1 1

1
A A, A +A,

(13)

1
A
If the failure rates of the two components are equal, equation (13) reduces to %9,

where @ is the mean time between failures of each LRU [21]. Figures 10 and 11 show

the relationships for series and parallel systems, respectively.
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However, improving reliability through redundancy is a method subject to
restrictions. In electrical and mechanical systems the performance parameters of a
combination of LRUS is not the same as for the original component alone and the
degraded performance of the system after one LRU fails is likely to be less than the
parallel combination. It should be emphasized again that redundancy reliability, like
BITE, carries the penalty of added space, weight, power supply, and cost as well as the
possibility of more maintenance activities.

Efforts to enhance reliability through complexity quickly reach a point of

diminishing returns from the diagnosability point of view.
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The previous considerations for improvement have been limited by the
functionality requirements of the system as well as the other factors in design. If a
system must be configured in such a way that changing LRU positions is impossible,
then placement and type of sensor associated with each LRU functioh can be optimized
in lieu of merely adding sensors (and weight and compleXity). One study utilizes the
minimization of a positive definite scalar measure of the covariance matrix as an
optimality criterion for sensor locations based on minimizing sensor uncertainties [26].
The idea of “smart sensors” implies the sensor, along with a microprocessor, makes the
diagnostic decisions itself [6]. Of course, the weight and volume capacity of the
system and LRU may determine just how “smart” a sensor can be.

Sensor placement can also be a factor of interfering inputs. External or internal
“noise” associated with system operating conditions can contribute to false out-of-
tolerance readings or mask true out-of-tolerance signals. This phenomena increases
either unjustifiable removals or allows for LRU failure without prior notice,
respectively. Placement for minimum interference or use of filters to eliminate excess

noise can increase diagnosability without additional complexity.

2.3.3 Design for Diagnosability

While some systems incorporate microprocessors programmed to test and isolate
faulty LRUS and even switch to backup devices, most require fault isolation provisions
like accessible probes or connectors called test points. Test points provide an interface
between test equipment and the system for the purpose of diagnosis, adjustment, and
monitoring of performance. The provision of test points is governed by the level of
LRU chosen and will usually not extend beyond what is required to isolate the

particular faulty LRU [4].
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2.3.3.1 Testability

To minimize the possibility of faults being caused by maintenance activities, test
points must be in standardized positions within the circuit buffered by capacitors and
resistors to protect the system from misuse of test equipment. Enough space should be
provided to allow for test probes of the test equipment. As with BITE, reliability of the
test equipment should be an order of magnitude better than the system. Additional
strategies to assess design effectiveness for testability can be found in Mil-Std-2165
[24]. The standardization of probes reduces the amount of test equipment as well as
lessens the probability of having the wrong test gear. It should be noted that additional
unnecessary test points are likely to impair rather than improve system diagnosability

and therefore must be chosen carefully in the design phase.

2.3.3.2 Ease of maintenance

Several design considerations can ease maintenance actions and improve
diagnosability. First, if at all possible, minimize maintenance in the first place. For
example, development of electronic fuel injection in automobiles has eliminated the
need to check the distributor condition [24]. _

Many additional items, similar to DFA (design for assembly) goals, reflect the
human factor.

Accessibility refers to fasteners and covers as well as position of mounting
relative to other parts. Parts should be easily removable with features such as quick
disconnect plugs for hydraulic and electrical parts, yet technicians should be
discouraged from removing and checking easily exchanged items as a substitute for the
correct diagnostic procedure. This can be accomplished by the choice of connections
of the particular LRU, which presents the classic trade-off between reliability and

maintainability. A high reliability LRU which is unlikely to require replacement could
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be connected by a wrapped joint, whereas a low reliability LRU could be conpected by
a less reliable plug and socket for quick exchange [4].

The amount of adjustment required during diagnosis can be minimized by
generous tolerancing during the design. Guide holes for adjustment tools and visible
displays are also helpful for avoiding damage to the equipment and monitoring
adjustment levels, respectively [4]. |

Design for off-line repair can increase the use of spares, but decreases
downtime immensely. Considerations here include the handling capacity and size of
the LRU. Good handling requires lightweight parts with handles to avoid equipment
damageA as well as protect from sharp edges and high voltage sources (even an
unplugged module can hold dangerous charges on capacitors) [4]. Generally, as the
size of the LRU increases the reliability decreases and the cost of spares increases.

Several ergonomic factors influence diagnosability based on performance aids
and the environment. Since the short term memory of a human has the capacity of
only about 7 bits of information, designs should require minimum tests for diagnosis
and minimum skill [11].  Overminiaturization should be avoided if possible.
Environmental conditions such as illumination, comfort, and safety in the form of body
positions and stress generating factors like weather, heat, vibration, and noise should
all be an integral part of design considerations [4]. Figure 12 illustrates how stressors

such as temperature can affect diagnosability.

Etfective temparature F

Figure 12. Effect of temperature on number of mistakes [24]

O
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A complete checklist of diagnosability design with respect to human factors can

be found in reference 31.

2.3.4 Selection of Designs

Design selection, from the earliest stages of concept development, should
consider every slice of diagnosability improvement introduced in the previous sections.
From the LRU to the entire system configuration, selection of particular désigns can be
optimized using techniques involving life cycle costing based on historical and
predicted data, mathematical prediction models based on advances in diagnosability
technology, and screening methods using prototype or production parts.

As noted previously, life cycle costing provides essential comparisons between
existing system architectures based on historical field data and design phase concepts
based on prediction techniques. Using cost of diagnosability as the common metric,
the optimal system design can be chosen from a set of limited choices.

Mathematical prediction models are used extensively to weigh the savings of
discrete advances in diagnosability technology. For instance, one study developed a
mathematical model for predicting impact on maintenance man-hours of on-board test
equipment in the form of BITE for use in the conceptual design of aircraft including the
USAF Advanced Tactical Fighter (ATF) [17]. The cost and performance penalty of
incorporating BITE must be balanced or exceeded by cost savings in support,
manpower, and improvements in availability to justify incorporating this technology in
the design. The life cycle costing mechanism available through the Boeing Company is
called the DEPCOST (dependability cost) model. This model, available for use on the
spreadsheet program Excel 4.0 or higher, incorporates all parameters that affect the
cost of an aircraft throughout its 20 year life cycle.

If actual products are available for testing, screening based on reliability and
diagnosability parameters can be accomplished using several techniques including:

screening by truncation of distribution tails based on tolerance limits defined by a
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normal distribution; “interference” between stress and strength distributions, again
using normal distributions of environmental stress and product strength to eliminate
products where intersections occur; burn-in screening to identify and eliminate products
with early failure mechanisms; and, linear screening which predicts early failures based
on a weighted average of early life parameters.

Selection of designs based on diagnosability promises to move today’s products
from weighty/costly add-ons to maintenance-friendly/efficient machines with

diminishing costs.
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3.0 DESCRIPTION AND MODELING OF THE BOEING 737-300 BLEED AIR
CONTROL SYSTEM

This section introduces the bleed air control system (BACS) including major
LRUs and their indications. The scope of the analysis and all assumptions are
explicit}y stated for the system. Modeling of the system is accomplished with the use
of a failure modes and effects analysis (FMEA) by Airesearch and maintenance
manuals provided by the Boeing Company. Failure combinations are incorporated in
similar fashion to previous research (Clark,1993) for ease of comparison analysis and
application of system metrics. Though the 737-300 is singled out in this research, all
analyses and recommendations can be extended to the 400 and 500 models since they

are exactly the same.

3.1 Description of the Bleed Air Control System (BACS)

The BACS consists of two identical sets (one per engine) of valves, controls,
ducts, and a heat exchanger mounted in the engine nacelle area as shown in figures 13

and 14.
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Figure 13. 737-300 BACS component location - left view
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Figure 14. 737-300 BACS component location - right view

Each set of equipment automatically selects the engine bleed air supply from

either the low-stage (5th stage) or high-stage (9th Stage) bleed ports and regulates the

pressure and temperature supplied to the air-using systems such as cabin air

conditioning, cargo heating, and anti-ice.

Bleed air from the 5th and Sth stage compressors is routed through a heat

exchanger, called the precooler, where it is cooled with air from the engine’s fan.

From the precooler, the air continues to the pneumatic manifold as shown in figure 15.
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Figure 15. 737-300 BACS schematic
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Since bleed air must be delivered to the pneumatic manifold within specific
temperature and pressure ranges to prevent under/overheat and under/overpressure
conditions, a number of valve and control systems are used for regulation.

During takeoff, climb, and most cruise and hold conditions, the pressure
available from the 5th stage is adequate to meet the requirements of air supply used.
During descent, approach, landing and taxi conditions 9th stage bleed air is required.
The selection of the bleed supply is controlled by the high-stage valve (HPSOV) and
the high-stage regulator (HSreg) setting. The HPSOV is responsible for regulating and
shutting off the flow of 9th stage engine bleed air in conjunction with signals from the
remotely located HSreg which selects the proper bleed air stage as necessary to satisfy
system requirements. The low pressure check valve (Check) permits the\ﬂow of 5th
stage bleed air and prevents higher pressure air from the 9th stage from back flowing
into the 5th stage. The pressure regulator and shutoff valve (PRSOV) limits bleed air
to a predetermined pressure level for the system. Secondarily, the PRSOV works in
conjunction with the 450°F thermostat (Thermo) as a flow modulating valve to limit
downstream temperature within a maximum upper temperature band based on signals
from the Thermo. A remotely located bleed air regulator (Breg) works with the
PRSOV to control the output pressure to a maximum and incorporates an overpressure
switch which activates the PRSOV to close in the event of extreme bleed pressure. The
precooler control valve (FAMV) controls the flow of fan cooling air to the bleed air
precooler (PCLR). The FAMV modulates in response to pneumatic control pressure
signals from a remotely located precooler control valve sensor (PCLRsen) to maintain
bleed air temperature downstream of the precooler within a specified range. The
PCLR vents excess air to ambient as do the HPSOV and PRSOV by incorporating
pressure relief valves to provide additional actuator relief in the event of transient
overshoots. All components are connected by a series of ducts (duct).

The BACS currently has five sensors, or indications, that are used to diagnose
system failures. These indications include 1) above normal readings on an analog

pressure gauge 2) below normal readings on an analog pressure gauge 3) bleed trip off
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light illumination 4) low cabin pressure on an analog pressure gauge, and 5) low cabin
temperature on an analog temperature gauge. All subsequent analysis refer to these
indications in the predeeding numerical order, e.g., bleed pressure hi & bleed trip off

equals indication 13.

3.2 Scope and Assumptions of BACS Analysis

3.2.1 Scopé

The valves, controls, ducts, and systems making up the BACS and described in
the previous section (parenthetically denoted) are considered LRUs which can be
replaced on the repair line as the lowest physical level of replacement. Each LRU
provides a function for the system that can be measured. The five indications listed
provide the performance measures of each LRU individually and collectively depending
on the mode of operation of the system. An example is the HPSOV providing pressure
to the system measured by the analog pressure gauge on the pilot’s overhead panel.
The LRU, HPSOV in this case, is directly associated with an indication, pressure in
this case. The LRU to indication relationship is causal in direction.

Each indication, though, does not necessarily imply a causal relationship to an
LRU unless only one LRU could have possibly caused the indication--a
distinguishability of one (section 2.3.2). The process of diagnosis is one of
determining the set of parameters,or LRUs, of a system that have parameter measures,
or indications, that fall outside the desired (or necessary) design values. This indication
to LRU relationship is diagnostic in direction, and the resulting set of suspect LRUs are
called candidates [11].

The scope of BACS model is to define the LRU/indication relationships in such
a way as to incorporate all LRUs and indications in the system as well as all modes of

failure of each LRU. Successful completion of the model allows for systematic
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changes to be incorporated and analyzed. Assumptions are made to simplify the

analysis and to provide consistency with a real system.

3.2.2 Assumptions

As opposed to previous research, this analysis incorporates all operating
conditions of the aircraft at once since the information from all engine output
conditions is realistically available to maintenance personnel. To move beyond the
trivial, proper electrical power is assumed to be available to the system, a failure that
has no indication associated with it is not considered, and an indicator failure is not
considered since the flight crew can establish its validity. Failure of circuit protection
is not considered. Valve port leakage and external leakage are not considered.

Only one LRU failure at a time is considered, i.e., mutually exclusive, though
an analysis technique for dependent LRU failures (passive) is developed. All ducting is
considered to be one LRU. The failure rates experienced based on the FMEA and
Boeing’s Dependability Cost (DEPCOST) model are in the same proportion as those
predicted. Failure modes obtained from the FMEA for the BACS are the only failure
modes considered. = Maintenance is performed in accordance with established
maintenance procedures and by personnel possessing appropriate skills and training.

Inputs to the BACS model are obtained through design standards and
engineering judgment if not stated explicitly by the Airesearch FMEA or Boeing

publications.

3.3 Modeling of the Bleed Air Control System (BACS)

Failure mode information is available from the FMEA conducted on the 737-
300 BACS including probability assessments for each mode of failure. Mean time

between failures for each LRU is available from a completed DEPCOST model based
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on historical data and maintenance reviews for the system as well. Since an LRU can
fail in several ways, a “sometimes” indication developed to exhibit relations between
failures and indications that only sometimes promote failure indications. The fault tree
analysis model of the BACS shown in figure 16 incorporates both always and
sometimes relations depicted as solid and dashed lines, respectively. Due to space
constraints the LRU failures (rectangles) are placed both above and below the

indications (ovals).
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Figure 16. Fault tree analysis model for the BACS

With this defined system model, metrics can be developed to compare different
systems that perform the same function by totally different designs or by reassigning
LRU-indication relationships. Refining previous research metrics (Clark,1993) to
address dependent/passive failures and defining a prediction method to determine mean
time between unscheduled removals (MTBUR) leads to a redesign methodology based
on diagnosability. Incorporating these prediction metrics into the life cycle costing

mechanism DEPCOST model, total diagnosability cost savings can be discovered.
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4.0 DIAGNOSABILITY METRICS AND REDESIGN METHODOLOGY

For diagnosability to be considered in the design/redesign process, there must
be some way to predict how system changes will affect system parameters for
comparing competing designs with respect to diagnosability. A methodology based on
the prediction technique must be arrived at for use in determining what parts of the
system should be changed to improve diagnosability. In section 4.1, metrics from
previous work are extended to measure the relative diagnosability of systems with LRU
failures thaf are dependent/passive. A prediction metric based on unjustified removals
and time is introduced in section 4.2. A design change methodology is discussed in

section 4.3.

4.1 Dependent Failures

As noted from previous work (Clark, 1993), determining which LRUs are
difficult to diagnose is not complex. By examining the fault tree analysis model of
figure 16, a list of all possible failures and their correéponding candidates can be
assembled. It may seem that the greater number of times a certain LRU appears as a
candidate, the harder it is to diagnose. Yet, if that particular candidate is the only
candidate for many of its failure modes it does not present a diagnostic challenge at all.
Moreover, even if a certain LRU is hard to diagnose, it may be of little concern if its
failure is very unlikely to occur [11].

Taking the above factors into consideration, equation 12 of section 2.3.2 was
modified to reflect the probability, or failure rate, of each particular LRU as shown in

equation 14 as weighted distinguishability [11].
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n

Y {PE(/C -1/C))
WD = ! - (14)
(1-1/C)>. PF,

i=l

PF, is the probability of LRU failure as defined by equation 15.

PF, =1- H(I—PCJ.) (15)

candidates

PC; is the probability of failure of each of the candidate LRUs for a given indication.

Weighted distinguishability, like distinguishability, varies from zero to one, but
provides a more realistic approach to system diagnosis comparisons.

Metrics defined up to this point have been derived from a mutually exclusive
standpoint with respect to failures, i.e., only one LRU failure occurs at a time to
produce a given failure indication. Realistically, this is not always the case. In fact,
the 737-300 FMEA incorporates a section of passive LRU failures, that, in conjunction
with certain other passive failures, activate a failure indication -- therefore the LRU
failures are dependent.

Since merely the incidence of one passive failure will not generate a failure

indication, the definition of PF, for use in equation 14 should be expanded to

incorporate dependent failures such as that depicted in the fault tree analysis model of

figure 17 if one or more passive LRU failures are to be modeled:
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Equation 15 essentially defines the additive rule of probability. Incorporating a
dependent passive event such as fault C in figure 17 requires the use of the
multiplicative rule of probability. For such modeling, equation 16 is suggested for use
in equation 14.

PF, :{1- [T (i-rc)) HPC“} [1PC. (16)

candidates candidates

Once again, all PC terms are the probability of failures of each of the candidate LRUs

for a given indication, yet based on dependency. PC; is independent, PC,, has an

“embedded” dependency, and PC,, has an “extended” dependency. Figure 17 models

an extended dependency of fault C. Though, if the “and” and “or” gates were
switched, the dependency would be embedded between faults A and B. Of course, the
PC, terms are only utilized if the model embodies them, otherwise they are discarded
and equation 135 suffices.

Though the analysis of the passive failures in the 737 BACS system is not
included in the scope of this research, weighted distinguishability can now be applied

to virtually any system modeled by fault tree analysis.

4.2 Mean Time Between Unscheduled Removals (MTBUR)

Attributed by Boeing as the “single most important input” in the DEPCOST
model, MTBUR has been targeted by this research as the overriding prediction
parameter of diagnosability. For an aircraft system, MTBUR is deﬁnéd as the average
number of unit flight hours occurring between unscheduled removals of an LRU.
Mathematically, it is the inverse of the LRU removal rate. Reliability mathematics and
labor time are the key contributors to the derivation of the predicted MTBUR based on

LRU failure rates and system structure.
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Though the normal distribution is capable of describing most mechanical part
lives, the scheduled maintenance overhaul and replacement times are assumed to be
within the middle portion of the curves shown in figure 6 of section 2.2.1. Therefore,
the exponential distribution of equation 9 is used in all subsequent analysis--assuming a
constant, or near cdnstant, failure rate. The structure of a system is most readily
evaluated in terms of times to complete maintenance actions. The assumption of
constant working conditions in the context of human factors as well as proper
experience and training are made. Equation 2 is used to define mean time between
failures (MTBF) to avoid redundancy in the calculations by accounting for existent
false alarms. The analysis also assumes a certain degree of maintenance technician
knowledge prior to diagnosis based on the principle of optimum checking order
(equation 10). In this case the cost factor is in the form of line labor hours.

From a generic FMEA a fault tree analysis model can be assembled to include
the failure rate of not only the LRU, but also the mode in which it fails. Therefore, a
particular failure indication rate can be assessed by summing the failure rates of all

I.RUs with a common indication:

" failrateLRU,lind, = failrateind, a7
i=1

given ind, is the common indication. Since maintenance technicians work in the

diagnostic direction, this indication failure rate is a necessary starting point.

In the science of diagnostics an LRU will be removed in one of two conditions:
failed or not failed. Removal in the failed condition can be predicted directly from the
reliability of the LRU and is justified. Removal in the not failed condition, or
unjustified removal, is a function of the probability of detecting the wrong LRU and
the time it will take to repair it as well as how often the other LRU candidates for that

indication fail. Equation 18 defines the prediction metric for total MTBUR of an LRU.

MTBUR,, =1/(1/ MTBUR,, +1/ MTBUR,) (18)

tot




45

MTBUR; is the mean time between justified unscheduled removals of an LRU and is

equal to the MTBF of that particular LRU. MTBUR,, is the mean time between

unjustified unscheduled removals defined by the mean time between failures of all other

candidate LRUs (MTBF,_;)divided by the probability of detecting the particular LRU

in question (PD,):

MIBEF,,
MTBUR,, = H%’D,. (19)
where PD, is defined by
pp, - FClind, 20
= (LLHPR + SLHPR) 20)

where PClind; is the probability of a particular LRU failing in a mode that incites a

given failure indication (generated from failrateLRU |indication, ), LLHPR is the line

labor hours per removal of the particular LRU, and SLHPR is the shop labor hours per
removal of the particular LRU. Both time variables are retrieved from maintenance log
books and historical data.

For a complete prediction of the total MTBUR of a particular LRU in a system,
equation 19 is inverted for each indication to find the unjustified removal rate and then
added to the others to find the total unjustified removal rate of the particular LRU. The

total unjustified removal rate is then inverted to find the total M7TBUR, which is

applied to equation 18. Examples of the MTBUR predictions are found in section 5.0
as well as a detailed spreadsheet analysis located in appendix B.
4.3 Design Change Methodology

The MTBUR prediction metric serves as a standard for change when comparing

competing designs. Analogous to the Service Modes Analysis (SMA) developed as a
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methodology for design changes based on serviceability [12], design/redesign based on
the MTBUR prediction metric should focus the following system changes:
1. LRUs with a high A and low MTBUR.
. LRUs with high spare costs.

2

3. LRUs included with highly ambiguous indications (high E).

4. LRUs with room for improvement ( MTBEF — MTBUR > 10000hrs).

5. Candidate combinations that will increase the “overall” system MTBUR,
(especially the MTBUR of high cost LRUs)

6. Indications with a high failure rate ( failrateind ).

Feasibility of system changes in terms of complexity of LRUs and their functions
should also be noted for cost optimality.

The MTBUR prediction metric can be applied to any system with a fully
defined fault tree analysis model and design change can be implemented based on the
preceding discussion. Diagnosability comparisons and ultimately cost comparisons

prove significant gains in insight for analysis based on this technique.
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5.0 APPLICATION AND EVALUATION OF MTBUR PREDICTION METRIC

The procedures introduced in the previous sections allow the designer to
accurately model an existing system to shed light on which LRUs are a source of
diagnosability problems. The designer can also incorporate system changes and see
precisely how time and cost are affected. For the BACS, the PRSOV is a known

diagnostic challenge due to its historical high rate of unjustifiable removals. Previous

work (Clark, 1993) suggests a comparison of metrics such as ¢ from equation 11 to
identify components, like the PRSOV, with potential diagnosability problems and then
an application of equation 14 to find a weighted distinguishability for modified systems
to see if an improvement is achieved. Application of the MTBUR prediction metric
allows for an immediate evaluation of not only which LRUs pose a threat to
diagnosability, but which improvements in diagnosability are feasible. |

The current 737 BACS design is the testing ground for the MTBUR prediction
metric in section 5.1. Section 5.2 applies the design change suggestions of section 4.3
to develop several redesigns of the system. An evaluation based on MTBUR changes
and cost savings is presented along with recommendations in section 5.3. Section 5.4

addresses the issue of spares provisioning.

5.1 Application of MTBUR prediction to the original 737 BACS

As stated earlier, only active/independent failures will be analyzed which make
up the vast majority of unjustifiable removals (over 90%). From the fault tree analysis
model of figure 16, section 4.2 metrics can be applied for each LRU to arrive at a
predicted MTBUR. An example spreadsheet of the original system analysis for the
PRSOV is located in appendix B. Using the DEPCOST model for historical values of
each LRUs MTBUR, an evaluation of the prediction metric may be accomplished.
Table 2 includes values of historical versus predicted MTBUR.
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LRU HISTORICAL PREDICTED
HPSOV 36018 38931
PRSOV 5394 6789

PCLR 65758 76841
duct 11000 11827
FAMV 16421 27123
CHECK 309102 319140
HSreg . 10985 15659
PCLRsen 15168 24106

Breg 11607 16700
Thermo 13799 89645

Table 2. Historical versus predicted MTBUR

Several LRUs (HPSOV, Breg, and duct) had no MTBUR listed. Based on
engineering judgment, these LRUs were assigned an MTBUR equal to twice their
historical mean time between failures (MTBF). Other omitted items include the
SLHPR and spares cost of the Breg and HPSOV which are estimated at values of
similar equipment (HSreg and PRSOV values, respectively, varying slightly due to
complexity differences). The predicted values fall within approximately twenty percent
of the true values with the exception of the 450°F thermostat. This anomaly could be
explained by organizational factors outside the scope of this research, e.g., direction
from higher levels because of low spares cost, ease of maintenance, least: SLHPR, or
merely politics, since the LRU should last much longer based on its failure rate.

The ultimate evaluation involves comparing the cost of the true versus historical
system using the DEPCOST model directly. A comparison of cost and MTBUR can be
accomplished by viewing figures 18 and 19. These figures are constructed by
modifying the MTBUR input column of the DEPCOST model to reflect first historical
values and then predicted values of MTBUR. The 450°F thermostat is extracted from

subsequent analysis due to the assumed organizational factors mentioned earlier as well
as the LRU impotency with respect to overall cost savings compared to all other LRUs
in the system. It should be noted that in all DEPCOST analyses only one spare per
LRU is considered to gain savings per unit LRU.

O
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Figures 18 and 19 validify the MTBUR prediction metric. Not only are
predicted MTBURs and costs within an acceptable range of historical values, but order
is preserved with respect to both candidates for diagnosability problems and cost
drivers. With this information, the choice of LRUs and functions for redesign can be
easily made.

Since no passive failures are addressed in this research one would anticipate a
higher predicted MTBUR and therefore a lower cost than the historical values as
figures 18 and 19 illustrate. A sample DEPCOST model spreadsheet can be found in
appendix C. (for analysis, all information not pertaining to this research is extracted).

5.2 System Modification and Comparison

All redesigns are based on not only diagnosability improvements, -but also on
cost savings since as noted in section 2.0, cost is always the common denominator.
Seven design modifications are studied and evaluations for each based on feasibility and
logic are given in accordance with the design/redesign methodology discussed in
section 4.3. The benchmark for all design comparisons is the original design using
predicted values of MTBUR for continuity. A sample spreadsheet analysis and
DEPCOST illustration for each change is located in appendix C.

5.2.1 Change 1--Remove Pressure Function from PRSOV

Since the PRSOV was a point of interest in previous research involving the 747-
400 BACS, and apparently is in the present analysis as well, the most successful system
change suggested in that analysis (Clark, 1993) is incorporated in the first rﬁodiﬁcation.
This change follows all suggestions found in section 4.3 and involves essentially

removing the pressure regulating function of the PRSOV.
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Like the temperature control function, the pressure control function of the
PRSOV is shared by other LRUs. In this case, the pressure is regulated directly at the
high and low pressure ports instead of at the junction of the two just prior to the
precooler. This change requires the check valve to be replaced by a control valve.
Also, the Breg must then be moved to the new control valve to monitor downstream
pressure and signal a bleed trip off indication in the event of an overpreésurization.

Based on benchmark MTBUR and cost, change 1 increases the MTBUR for the
PRSOV by 51 percent, decreases the MTBUR for the check valve by 79 percent, and
slightly decreases the MTBUR for the Breg. Since the check valve is c&nverted to a
control valve, the failure rate of its counterpart control valve, the HPSOV, is assigned
to the check valve bringing its MTBUR down exponentially. Since the check valve is
more resistant to cost change than the PRSOV due to labor time and ambiguity, overall
cost is in favor of the PRSOV. The cost savings for this system change is on the order
of 8 percent--a significant amount based on the size and complexity of an aircraft
system.

The feasibility of this design change can be approached from two directions.
The number of LRUs remains constant, and hence the complexity does not increase nor
do the functional requirements change drastically. Even the relationship of the Breg is
not significantly altered since it was remotely located from the PRSOV anyway. Yet,
considering the limited amount of space available in this particular system, any change
in size and complexity at the LRU level could be restrictive, i.e., making the check
valve a control valve. Also, keeping the bleed trip off functional relationship with the
PRSOV requires an additional control line from the Breg.

For an original design for future aircraft (737-600,700,800...) change 1 is a
feasible and logical design to address the unjustifiable removal problem, but a “quick

fix” for current aircraft it is not.
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5.2.2 Change 2--Add PRSOV Closed Sensor Light

Once again, the methodology suggestions of section 4.3 are heeded and the
PRSOV is targeted once more. Using an existing design modification based on the
747-400 BACS design, a PRSOV closed sensor light/indication is added to the system
to arrest the unjustifiable removals of at least that particular LRU. Since 70 percent of
the PRSOV failure modes are in the closed position, this modification promises
significant impact. A

Basically, this modification entails simply adding a limit switch type sensor to
give the aircraft crew, and thus troubleshooting personnel, an indication when the valve
is in its closed position (indication 6 for analysis). Thus, if an indication 2 (bleed
pressure low) occurs without an indication 6 (PRSOV closed) then a PRSOV failure
can be discounted. This decrease in ambiguity of indication 2, which is the most
ambiguous, should aid in overall system diagnosability.

Based on the benchmark, MTBUR of the PRSOV increases by 34 percent and
all other MTBURSs increase slightly as well with the exception of the check valve’s
decreasing slightly because of the system metric dynamics (the ambiguity of the check
valve’s only indication, 2, mandates an increase in false detections of low failure rate
LRUs with a decrease in number high failure rate candidates). Overall cost savings is
approximately 7 1/2 percent. ’

This modification exemplifies the age old battle between BITE and increased
weight and complexity. Modern sensors have a reliability of at least an order of
magnitude above that of the parent system and weigh as little as a dime, yet even the
slightest increase in weight and complexity can substantially increase cost in terms of
fuel and assembly hours--especially for aircraft systems. From the human factors
standpoint, there is a point of diminishing returns on information available to
crewmembers in the form of indications, but since this indication is continuous and can
be recorded, reaching that point from this indication is doubtful.

Since so many system variables comprise fuel saving strategies, the cost benefit

seems to be in favor of increased weight based on the amount of savings this change
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produces. Even in this particular system, there is always enough room under the

cowling for “just one more sensor”.

5.2.3 Change 3--Add Indication 3 to PRSOV

Targeting the PRSOV once again since it appears to have the most room for
improvement, the function-indication relationship is modified to decrease the ambiguity
of indication 2 in much the same way as adding a sensor. \

Some type of relationship with existing indications or LRUs and the PRSOV is
sought after because of the high failure rate of the PRSOV in the closed position.
Considering the bleed trip off light illuminates whenever a bleed trip occurs and a bleed
trip closes the PRSOV in the case of overheat or overpressure, an association is already
in place. Merely running the bleed trip off light (indicator 3) wire from the PRSOV
closed position instead of the overheat/overtemperature probes which currently signal
the indication not only reduces the ambiguity of indication 2, but maintains system
integrity by changing no functions and adding no sensors. This modification simply
changes the PRSOV failed closed indication from indication 2 to indication 23.

The MTBUR for the PRSOV increases by 29 percent and slightly increases for
the HSreg, duct, Breg, HPSOV, and PCLR primarily due to the decrease in ambiguity
of indication 2 which these LRUs share. All other LRU MTBURs decrease slightly
due to associations with both indications 2 and 3 (except for the check valve whose
MTBUR decreases for the same reason stated in section 5.2.2) which the PRSOV is
now associated with. The overall cost savings for this modification is almost 6 1/2
percent.

This modification seems very feasible due mainly to its simplicity. According
to Boeing publications the bleed trip off light is incited by an overpressure (> 180 * 10
psi) at the inlet of the PRSOV which is monitored by an overpressure switch inside the

remotely located Breg. The indication is also incited by an overheat (>490°+10°F) out
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of the precooler which is monitored by an overheat switch just downstream of the
precooler. This change would replace two wires running from the switches with one
wire running only from the PRSOV to the bleed switch off light. A drawback would
be an apparent need to install a limit switch sensor in the PRSOV to monitor its
position and relay the message to the indication, therefore adding a sensor like change 2
but not decreasing the ambiguity as much as a separate indication might.

Overall, this design mentality is logical. Scrutiny reveals that complexity is
even reduced if the bleed trip off light signal wires are removed from the Breg
overpressure and overtemperature switches. Of course, a modification like this may
take more hours of overhaul than desired. In addition, even though indication 2
decreases in ambiguity, indication 23 increases in ambiguity. In light of the above

discussion, change 3 promises to be a sound design.

5.2.4 Change 4--Add Indication 3 to PRSOV and FAMV

From the original DEPCOST analysis it appears that besides the PRSOV, the
FAMV is next in line for room for possible improvement based on the suggestions of
section 4.3. Since the FAMYV already has a sometimes relationship with indication 3,
making it a hard failure (always relationship) does not seem out of the question.

From a mechanical standpoint, whenever the FAMYV fails in the closed position,
the PCLR will not receive any cooling air from the engine fan. This should cause an
overheat condition an overwhelming majority of the time. A wire and probably a limit
switch sensor must be added to the FAMYV to incite the bleed trip off light whenever a
failure occurs. This modification is applied in conjunction with the modification in the
previous section for analysis purposes.

From the original benchmark, the MTBUR of the PRSOV increases by 22
percent. All other LRUs are affected in the approximately the same manner and same

degree as the previous change. Even, the MTBUR of the FAMV is decreased slightly.

The overall cost savings is almost 6 percent--less than that of change 3 alone.
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The faulty logic in this redesign is that it increases the failure rate of an already
high failure rate indication (23) at least as much as it decreases the failure rate of an
already improved indication (2). Thus nullifying any gains previously made. Also,
even though the FAMV has much room for improvement, it does not have much room
in the particular failure mode targeted (only 30 percent of all failures are in the closed
mode). © From a mechanical standpoint, the same arguments apply as those given
against modification 3, but twofold since another sensor must be added.

Not only must an LRU with a high potential for improvement be targeted, but
the particular failure mode that causes most of its failures must be addressed.

Modification 4 is not recommended.

5.2.5 Change 5--Add PRSOYV Closed & FAMY Open Sensors

The lesson learned from the previous section is applied by combining change 2
from the 747 design to a sensor addition on the FAMV. The open position of the
FAMYV valve along with the closed position of the PRSOV is targeted by adding two
sensors to the system.

In addition to the PRSOV modification discussed in section 5.2.2, a limit switch
sensor must be added to monitor the failed open position of the FAMV which accounts
for 70 percent of its failures. These two sensors decrease the ambiguity of two
ambiguous indications (2 and 5) while increasing the diagnosability of the two highest
cost drivers. | |

The MTBURs of the PRSOV, PCLRsen, and FAMV are significantly increased
while those of the HSreg, duct, Breg, and HPSOV are increased slightly. The PCLR
and check MTBURs are decreased slightly due to their increase in probability of false
detection which influences cost little. The overall cost savings is over 10 percent.

The BITE versus weight and complexity conflict arises again for this
configuration. The cost analysis of added weight is not included in this research, but it

is doubtful cost would encroach upon the savings realized by two lightweight sensors.
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5.2.6 Change 6--Add PRSOV Closed & FAMYV Stuck Sensors

Iterating the previous change one more step to arrest all unjustifiable removals
of the FAMV, a “stuck” sensor added in lieu of a stuck open sensor. The FAMYV is
the second highest cost LRU in terms of replacements and definitely a cost driver in
terms of diagnosability so this modification is analyzed with optimism.

Preferably, a stuck sensor would be no more complex than a single limit switch.
Since the LRU in question consists of a butterfly valve, a sensor placed on the axis of
the valve could monitor any movement, or lack thereof. No additional sense lines
would be necessary from the previous modification. Worst case, two limit switches
(open and closed) would be required.

The analysis shows significant increases in all LRU MTBURs especially the
PRSOV (34 percent) and FAMV (25 percent). The overall cost savings is 12 percent.

By virtually eliminating all unjustifiable removals of the FAMV (reducing
MTBUR to MTBF of the LRU), a relatively simple modification realizes almost twice

the savings as the 747 design.

5.2.7 Change 7--Add PRSOV & FAMY Stuck Sensors

The final modification of this analysis iterates the previous modification one
more time by incorporating a “stuck” sensor of both the PRSOV and FAMV. This
modification essentially eliminates all unjustifiable removals of the two least
diagnosable/highest cost drivers in the pneumatic system.

Both the PRSOV and FAMV incorporate butterfly-type valves for their
operation so both could be fitted with the same “stuck” sensor mentioned in section
5.2.6. Once again, complexity is not increased to a great extent and added weight does

not seem to threaten feasibility.
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Based on the benchmark once more, all LRU MTBURs realize a rather
tremendous increase: PRSOV 65 percent; PCLRsen 54 percent; FAMYV 25 percent; and
all others over 3 percent. The overall cost savings is over 16 percent.

This change is recommended over all other changes due to its simplicity and
ease of retrofitting current aircraft designs. Information from the Boeing company and
the Federal Aviation Administration (FAA) implies bigger cost savings realized on
sensor-based modifications rather than complete component overhaul do to certification
practices. Change 7 of the BACS MTBUR based research analysis possesses the
confident expectation of most cost-benefit and least retrofit time loss. A summary of

modification results based on predicted diagnosability cost is shown in table 3.

Original design cost = $85,715
DESIGN COST % SAVINGS
Change 1 $78,673 8.2
Change 2 $79,316 7.5
Change 3 $80,187 6.5
Change 4 $80,696 5.9
Change § $77,032 10.1
Change 6 $75,293 122
Change 7 $71,715 16.3

Table 3. Cost analysis of modifications.

5.3 Spares Provisioning

All prior cost analyses consider only the cost per unit LRU. The DEPCOST
model includes a spares holding cost found by equation 21.

i(1+1)3

&xvaslﬂdrngt:Mmbaq&wasx(hstPa&xre(ht[( — J+W§Hdairgﬁda'} 1)
(L+)¥rte —

where i=(MARR-Inflation Rate)/(1 +Inflation Rate).
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If the number of spares is found using a Poisson distribution with a spares
availability of 95 percent, a change in LRU MTBUR is likely to have an impact on
overall diagnosability cost.

The Boeing Company’s algorithm for computing the number of spares is based
on the Poisson expansion of

Z{(e-N)*(N")]/i! > fillrate(0.95) 22)
i=}
where e is the natural logarithmic base, r+1 is the number of required spares to satisfy
the fill rate, and N is found from equation 23.

N = QPA* FlightHours * TurnDays* RR / 365 (23)
where QPA is the quantity per airplane, FlightHours is the fleet size multiplied by the

average flight hours per airplane in one year, the TurnDays is the time in the shop (14
days for electrical components and 30 days for mechanical components), and RR is the
removal rate which is the inverse of MTBUR. An increase in MTBUR should decrease
the cost of the system since it is inversely proportional to the number of spares, and
therefore the holding cost.

Incorporating the required number of spares for the system, an overall system
cost comparison can be made. Table 4 presents a summary of the modiﬁéation results

to include the cost of actual spares provisioning.

Original design cost = $122,258
DESIGN COST % SAVINGS
Change 1 $112,443 8.0
Change 2 $113,085 7.5
Change 3 $115,343 5.7
Change 4 $115,852 5.2
Change 5 $107,651 12.0
Change 6 $105,912 134
Change 7 $102,334 16.3

Table 4. Cost analysis of modifications including spares provisioning.

e
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Actual spares provisioning reveals less savings for changes 3 and 4, but an
increase in savings for changes 5 and 6. The majority of cost savings from the
decrease in the number of required spares is due to the PRSOV and FAMV, falling
directly in line with the redesign methodology of section 4.3.
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6.0 CONCLUSION

The growing life cycle cost dependency of quality products is prompting design
engineers to meet product specifications with diagnosability as a major ingredient. This
research has addressed diagnosability analysis for mechanical systems quantitatively by
means of LRU-indication relationships. These relationships, along with structure
which is defined by maintenance time, essentially determine the diagnosability of a
system. As system LRU functions and indications are modified, diagnosability also
changes based on the reliability of each LRU and the ambiguity of each indication.

The MTBUR of each system LRU is a direct measure of diagnosability. A
generic metric was developed to predict LRU MTBURs for any system made up of
several LRUs that give some indication of failure. The MTBUR of a particular LRU is
directly related to the probability of detecting that particular LRU and its time to repair
given a failure indication including other LRUs. The value of MTBUR for each LRU
can be compared to that of other LRUs to determine which ones present a diagnostic
challenge. System changes based on this information can then be made td decrease the
cost of diagnosability.

The MTBUR prediction metric was applied to the 737 BACS to determine
system improvements. LRU evaluation presented the PRSOV and FAMV as primary
candidates for diagnosability improvement. The life cycle costing mechanism,
DEPCOST model, was used to evaluate system cost based on the diagnosability
parameters of unjustified removals, spares cost, and maintenance time. Seven design
changes were suggested and analyzed based on MTBUR, cost, and feasibility. These
redesigns modify LRU indications by optimizing current indications or by adding
sensors to strategic LRUs.  Evaluations of the redesigns revealed an improvement in
diagnosability directly impacting the cost of the system.

Quality through diagnosability cannot be neglected in today’s marketplace.
With cost as the common metric for design evaluation, and analysis factors contributing

to extensive downtime costs, design for diagnosability should be more than mere
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happenstance considered after the product is launched. The relationships of
diagnosability developed here can be directly compared with other common design
decision-making variables such as manufacturability and ease of assembly in the arena
of life cycle costing. The direction of future research is expected to address the
structure of designs explicitly in terms of maintenance hours. This will especially

enhance prediction techniques of systems with a lack of historical data.
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Frequency-Based Vibration Troubleshooting Checklist

Vibration Possible
Frequency  Cause Comments
1 X Rpm imbalance Steady phase that follows the transducer. Can be caused by load variation,
material buildup, or pump cavitation.
Misalignment  High axial levels. 180-deg phase relation at the shaft ends. Usually accompanied
or bentshaft by high 2 X rpm frequency.
Strain Caused by casing or foundation distortion, or from attached structures (e.g., piping).
Looseness Directional; changes with transducer location. Usually accompanied by high
harmonic content and random phase.
Resonance Caused by attached structures; drops off sharply with change of speed.
Electrical 8roken rotor bar in induction mator. Often accompanied by sidebands of
2 X mator slip frequency.
2 X pm Misalignment  High levels of axial vibration.
or bent sha®t
Harmonics | Looseress targe number of harmonia: impulsive or truncated time waveform
Rubbirg Shaft contacting machine housing.
Sub-rpm Qit whiri Unstable phase; typically 0.43 to 0.48 of rpm.
. 1 RPM Ball Diameter
Bearings tal Train = X 1-— - X
earing Fundamental Train 3 % { Pitch Diameter CQS contact angle]
N X rpm Rolling #8alls RPM Ball Diameter
= X - X ta
element Inner race 2 60 1+ Pitch Diameter COS contact angle]
bearings .
#8alls RPM Ball Diameter
= < 1- X
Outer race = —— X %0 { Pitch Diameter COS contact angla)
Pitch Diameter RPM Ball Diameter
= X 1- be H
. Ball defect 2 X Ball Diameter - 60 { (P'rtch Diameter (COS contact angle})]
Usually modulated by running speed.
Gears Gearmesh (#teeth x RPM); usually moduiated by running speed.
Belts Belt X running speed and 2 X running speed.
Bladesrvanes  «8ladesivanes X rpm; usually present in a normaily-running machine.
Harmonlcs indicate that 2 problem exists.
Resonance A number of passible sources, induding shaft, casing, foundation, and attached

structures. frequency is proportional to stiffness and inversety propoctional
to mass. Run-up tests and modal analysis are useful in diagnosis.

(Adapted from material fumenad oy DU Engineering Com)

Figure A2. FFT troubleshooting checklist
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1MTBURiun*1e6

MTBURI-u_failratei-u

0

[eNoNoNoNoNol ol

MTBUR Calculations
LRU fail rate MTBF PC LLHPR  SLHPR
hpsov 13.882 72035.73 0.0013882 45 464 737-300,400,500
prsov 89.135 11218.94 0.0089135 3.05 4.64
pclr 8.804 113584.7 0.0008804 4 10 prsov
duct 45.455 21999.78 0.0045455 4 2 i= 89.135
famv 29.578 33808.91 0.0029578 7.66 8.92
check 1.34 746268.7 0.000134 4 18
HSreg 37.67 26546.32 0.003767 3.13 5.38
PCLRsensor  16.805 59506.1 0.0016805 2.24 1.53
Breg i 43.077 23214.24 0.0043077 9.94 538
Thermo - 9.058 110399.6 0.0008058 4.15 1.39
sum FRs perind  # of candidates PCIHPRI nommali 1/ilcateind* 166 sum FRn-FRifind 1/FRn+ MTBFn/PDi
Indication candidates failrateind Ci PDi MTBFind failraten-i MTBFn-i
1 h,prH,B 70.85485 4 0.470195 14113. .
13 ., hH 44611 2 224160 0 0
2 hprpedtcHPBT  151.756 10 0.418728 6589.525 89.3615 11190.5 26725.009 37.41813
23 dip 45919 3 217774.8 0 0
24 pe.d 58661 2 170471 o 0
245 pe,d 224405 2 445622.9 o] 0
25 pc.d 1.3493 2 741125 0 0
3 At 9.0613 2 110359.4 o] 0
4 pe.d 271285 2 368602.4 0 0
5 dfpP 33.83175 3 29558.03 0 0
LRU indication % of FR__failrateperind LRU indication % of FR _failrateperind
hpsov 1 25 3.4705 famv 2 25 7.3945
13 5 0.6941 23 5 1.4789
2 70 9.7174 5 70 20.7046
prsov 1 30 26.7405 check 2 100 1.34
2 70 62.3945 HSreg 1 45 16.9515
pelr 2 65 5.7226 13 10 3.767
24 15 1.3206 2 35 13.1845
245 10 0.8804 PCLRsen 2 25 420125
25 5 0.4402 23 5 0.84025
4 5 0.4402 5 70 11.7635
duct 2 70 31.8185 Breg 1 55 23.69235
23 5 2.27275 2 35 15.07695
24 10 4.5455 Thermo 2 10 0.9058
245 3 1.36365 3 S0 8.1522
25 2 0.9091
3 2 0.9091
4 5 227275
5 3 1.36365
Totals
sum FRe-i column 1/Tot FRovi "1e6 sum FRiu column 1/FR *1e6 MTBFi

Tot Failrate n-i Tot MTBF n-i

failratei-u MTBUR i-u MTBUR i

133.47585 7491.9919970541

58.16048 17193.807 11218.94

(IMTBURuUn+1IMTBUR))

Predicted MTBUR i

6789.0747

Historical MTBUR

5394

Figure Bl. Sample Quattro Pro MTBUR calculation spreadshéet
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100000 $70,000
90000 total cost
$60,000 $78,673
80000
% 60000 $40,000 w
E 50000 .8
= 40000 $30,000
30000 $20,000 EEEE MTBUR
‘ 2 $10,000
10000
. 0 241 $0 —&—GRAND
o u o o X
3 2 %8 2§ 23 5 % ToTAL
o ® © a4a ¢, <« O O < COST
o I X o uw o o [$]
a - I
O
o
LRU
LRU - fail rate MTBF PC LLHPR  SLHPR
hpsov 13.882 72035.73 0.0013882 4.5 4.64 737-300,400,500
prsov 89.135 11218.94 0.0089135 3.05 '  4.64
pelr 8.804 113584.7 0.0008804 4 10 prsov
duct 45,455 21998.78 0.0045455 4 2 i= 89.135
famv 29578 33808.91 0.0029578 7.66 8.92
check 13.882 72035.73 0.0013882 4 1.8
HSreg 37.67 26546.32 0.003767 3.13 5.38
PCLRsensor  16.805 59506.1 0.0016805 2.24 1.53
Breg 43.077 23214.24 0.0043077 9.94 538
Thermo 9.058 110389.6 0.0009058 4.15 1.39
sumFRsperind  # of candidates PCitPRI normak  1siketend* 1e6 sumFRnFRignd  1FRe-i MTBF-PD IMTBURIuN" 166
Indication candidates failrateind Ci PDi MTBFind failraten-i MTBFn-i  MTBURI-u_failratei-un
T hHE 475605 3 23831.94 0 0 0
13 hHB 6.61495 3 151172.7 0 0
2 hpedfHPBT 88.0215 8 11360.86 ¢] o 0
23 drpP 45919 3 +217774.8 0 0 0
24 ped 58661 2 170471 0 0 0
245 pe.d 2.24405 2 445622.9 0 0 0
25 pedprc 644379 4 0.964042 15518.82  2.0434 489380.4 507633.74 1.969924
3 d.T.pr 358018 3 0.68178 27931.56 9.0613 110359.4 161869.69 6.177809
4 ped 271285 2 368602.4 0 0 0
5 dfpP 33.83175 3 29558.03 0 0 0
LRU indication % of FR__failrateperind LRU - indication % of FR faikateperind
hpsov 1 25 3.4705 famv 2 25 7.3945
i3 5 0.6941 23 5 1.4789
2 70 9.7174 5 70  20.7046
prsov 3 30 26.7405 check 25 5 0.6941
25 70 62.3945 HSreg 1 45 16.9515
pcir 2 65 5.7226 13 10 3.767 !
24 15 1.3206 2 35 13.1845
245 10 0.8804 PCLRsen 2 25 420125
25 5 0.4402 23 5 0.84025
4 5 0.4402 S 70 11.7635
duct 2 70 31.8185 Breg 1 50 21.5385
23 5 2.27275 13 5 2.15385
24 10 4.5455 2 35 15.07695
245 3 1.36365 Thermo 2 10 0.9058
25 2 0.9091 3 €0 8.1522
3 2 0.9091
4 5 2.27275
5 3 1.36365
Totals
sum FRnu coksmn. T &S, t1et sum F2w column VPR *Te6 MITBFY
Tot Failrate n-i  Tot MTBF n-i failratei-un MTBUR i-un MTBUR i-j
11.1047 90051.955680909 8.147733 122733.524 11218.94
U{IMTBURW+ 1MTBUR)
Predicted MTBUR i " Historical MTBUR i

10279.3165 5394

Figure C2. Spreadsheet calculation and DEPCOST illustration for change 1
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100000 $70,000
90000 total cost
$60,000
80000 $79,316
70000 $50,000
g 60000 $40,000 L
o 50000 g
S 40000 $30,000 ©
30000 $20,000 BRI MTBUR
2 $10,000
10000 !
) —e—GRAND
. 0 " $0 TOTAL
o g = N =
s 25 8 § 333 % COST
e T g & 2 & &
o Q x
a
LRU
LRU fail rate MTBF PC LLHPR  SLHPR
hpsov - 13.882 72035.73 0.0013882 4.5 4.64 737-300,400,500
prsov 89.135 11218.94 0.0089135 3.05 464
peir 8.804 113584.7 0.0008804 4 10 prsov
duct 45.455 21899.78 0.0045455 4 2 i= 89.135
famv 29.578 33808.91 0.0029578 7.66 8.92
check 1.34 746268.7 0.000134 4 1.8
HSreg 37.67 26546.32 0.003767 3.13 5.38 ch2
PCLRsensor  16.805 5§9506.1 0.0016805 2.24 1.53
Breg 43.077 23214.24 0.0043077 9.94 5.38
Thermo 9.058 110399.6 0.0009058 4.15 1.39
sumFRspecind  #of candidetes PCUHPRI nomakz 1Asikateind™ 106 sumFRaFRIAd  1FRnt MTBF0-iPDi IMTBURIUT 146
Indication candidztes failrateind Ci PDi MTBFind failraten-i MTBFn-i_ MTBURI-u_failratei-un
1 hpeHB 70.85485 4 0.4 141134 441144 4 4827056 20.74234
136 hH 4.4611 2 224160 0 ] 0
2 hpedfcHPET 89.3615 9 11190.5 0 0 0
236 dfP 45919 3 217775 s} 0 0
24 ped 5.8661 2 170471 o 0 0
245 pc,d 2.24405 2 445623 0 0 0
25 pcd 13493 2 741125 0 0 0
36 av 9.0613 2 110359 0 0 0
4 ped 271295 2 368602 0 0 0
5 d1pP 33.83175 3 29558 0 o] 0
26 pr 62,3945 1 1 16027.1 00 0 0
LRU indication % of FR _faitrateperind LRU indication % of FR _faiketeperind
hpsov 1 25 3.4705 famv 2 25 7.3945
136 5 0.6841 236 S 1.4789
2 70 9.7174 S 70  20.7046
prsov 1 30 26.7405 check 2 100 1.34
25 70  62.3945 HSreg 1 45  16.9515
pelr 2 65 5.7226 136 10 3.767
24 15 1.3206 2 35 13.1845
245 10 0.8804 PCLRsen 2 25 4.20125
25 5 0.4402 236 5 0.84025
4 5 0.4402 5 70 11.7635
duct 2 70 31.8185 Breg 1 55 23.69235
236 5 227275 2 35 15.07695
24 10 45455 Thermo 2 10 0.9058
245 3 1.36365 36 S0 8.1522
25 2 0.9081
36 2 0.9091
4 5 2.27275
] 3 1.36365
Totals
Sum FRn.1 column Mot 8 " tek $um FRu colima  1FR1u*1e6 MTBFi
Tot Failrate n-i__Tot MTBF n-i failratei-un MTBUR i-un MTBUR -

4411435

22668 360748827 20.74234 48210.564 11218.84

Predicted

AMTBURUN IMTBUR))

MTBUR i
9101.0574

Historical MTBUR i

5394

Figure C3. Spreadsheet calculation and DEPCOST illustration for change 2
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100000 $70,000
90000 total cost
80000 $60,000 $77,032
70000 $50,000
n:: 60000 $40,000 .
@ 50000 3
= 40000 $30,000 ©
30000 $20,000 B MTBUR
10,000
10000 $10,
0 $0 —&—GRAND
) > o 05 @ o > > & x TOTAL
o & 2 2 8 = 0 4 8 cosT
e Z T £ 2 & &
a. O T
a
LRU
LRU fail rate MTBF PC LLHPR  SLHPR
hpsov 13.882 72035.73 0.0013882 4.5 464 737-300,400,500
prsov 89.135 11213.94 0.0089135 3.05 4.64
pelr 8.804 113584.7 0.0008804 4 10 prsov
duct 45.455 21998.78 0.0045455 4 2 i= 89.135
famv 29.578 33308.91 0.0029578 7.66 8.92
check 1.34 745268.7 0.000134 4 1.8
HSreg 37.67 28346.32 0.003767 3.13 5.38 ch3
PClLRsensor  16.805 5250€.1 0.0016805 2.24 1.53
Breg 43.077 2321424 0.0043077 9.94 5.38
Thermo 9.058 ©10398.6 0.0008058 4.15 1.39
ot TS e KO CHOCHES PCIHPR) nonmaky 1sikaeind”1e6  sum FRUFRIgNd  15Pns MBS0 IMTBURIWT 146
Indication candidates fzilezteind Ci PDi MTBFind failraten-t MTBFn-i  MTBURI-u_faifratei-un
T hprHB 7 285 4 0.470195 14113.4 441144 226684 4B210. 3234
136 hH < 2 224160 o] 0 0
2 hpedfcHPB.T £ <] 11180.5 0 s] 0
236 a1p z 3 217775 0 0 0
24 ped z 2 170471 4] 0 4}
245 pc.d z 2 445623 0 0 4]
25 pe.d . 2 741125 0 0 0
36 ar z 2 110359 0 o] 0
4 pc.d 2 2 368602 0 0 o]
5 4¢P °z 2 76178 0 0 0
26 pr 1 1 16027.1 00 o] 0
57 f 1 48298.4
LRU indication = faivateperind LRU indication % of FR fairategannd
hpsov “ 25 3.4705 famv 2 25 7.3345
iz s 0.6841 236 5 14789
z < 97174 57 70 207048
prsov K Kis 26.7405 check 2 100 134
e 623945 HSreg 1 45 16 €315
peir 32 57226 136 10 3787
33 1.2206 2 35 131¢45
ke 0 8304 PCLRsen 2 25 420125
< 0.2402 236 5 024025
z 04402 5 70 117235
duct ] 318185 Breg 1 55 2382235
S 227275 2 35 1507835
°Z 45455 Thermo 2 10 05058
3 138365 36 S0 Z 1322
z 05091
z 0 091
z 227275
3 1.35365
sum FRA cokrmn MK FRA 108 LR Y MTBF
Tot Failrate n-i__Tot MTBF n-t -un MTBUR i-un MTBUR i-i
44.11435 22668.360748827 34 48210564 11218.94

Figure C4. Spreadsheet calculation and DEPCOST illustration for change 3

TREMTE R  IMTBURY)

Precicied MTBUR

Historical MTBUR i

$101.0574

5394
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100000 §$70,000
90000 total cost
$60,000 $80,187
80000 '
70000 $50,000 )
60000
n:c $40,000 %
E 50000 =]
= 40000 $30,000 ©
30000 $20,000 BRI MTBUR
2 $10,000
10000 !
. —&o—GRAND
. 0 $0
> o 3 o = > > o ~ TOTAL
o 2 3 ¢ ¢ 5 ©o I % cosT
w ® B o g < 0o O c
14 T pur ] w o a (&)
o [&] I
a
LRU
LRU fail rate MIBF PC LLHPR  SLHPR
hpsov 13.882 72035.73 0.0013882 4.5 4.64 737-300,400,500
prsov 89.135 11218.94 0.0089135 3.05 464
pcir 8.804 113584.7 0.0008804 4 10 prsov
duct 45,455 21889.78 0.0045455 4 2 i= 89.135
famv 29.578 33808.91 0.0029578 7.66 8.92
check 1.34 746268.7 0.000134 4 1.8
HSreg 37.67 26546.32 0.003767 3.13 5.38 ch4
PCLRsensor  16.805 58506.1 0.0016805 2.24 1.53
Breg 43.077 2321424 0.0043077 9.94 538
Thermo 9.058 110388.6 0.0009058 4.15 1.38
SMFRsserna  #of candidates PCiHPRinommak  Maikateind™ 166  sum FRA-FRifnd  1FRn4 MTBF PO 1MTBURILN" 166
Indication candidates failrateind Ci PDi MTBFind failraten-i MTBFn-i  MTBURI-u_failratei-un
1 h,pr,H.B 70.85485 4 0.470195 14113.36 44.114 4 20.
13 hH 44611 2 224160 0 0 0
2 hpedfcHP.BT 853615 9@ 11180.5 0 0 0
23 df.Ppr £66.9864 4 0.921533 14928.4 4.5919 217774.8 236317.88 4.231588
24 pc.d 58661 2 170471 0 0 1]
245 pe.d 224405 2 445622.9 0 0 o]
25 ped 13483 2 741125 0 0 0
3 a7 e0513 2 110359.4 0 0 0
4 pcd 271285 2 368602.4 s} o] 1]
5 CRE 3283175 3 29558.03 0 o} o
LRU indication % of FR__ftaitrateperind LRU indication % of FR _failrateperind
hpsov 1 25 3.4705 famv 2 25 7.3945
13 5 0.6941 23 5 1.4789
2 70 9.7174 5 70 20.7046
prsov 1 . 30 26.7405 check 2 100 1.34
23 70 62.3945 HSreg 1 45 16.8515
peir 2 65 5.7226 13 10 3.767
24 15 1.3206 2 35 13.1845
243 10 0.8804 PCLRsen 2 25 420125
25 5 0.4402 23 5 084025
4 5 0.4402 5 70 11.7635
duct 2 70 31.8185 Breg 1 55 23.69235
23 5 2.27275 2 35 15.07695
24 10 4,5455 Thermo 2 10 0.9058
245 3 1.36365 3 90 8.1522
25 2 0.9091
3 2 0.8091
4 5 227275
5 3 1.36365
Totals
sum FRn.I coumn VTt FRn.(* 16 S ST come 1FR 16 MTBF
Tot Failrate n-i_Tot MTBF n-i failratei-un MTBUR i-un MTBUR i-j
48.70625 20531.245989991 24 97393 40041.755 11218.94
IHAMTBURLN+ IMTBURY}
Predicted MTBUR i Historical MTBUR i
8763.55599 5394

Figure C5. Spreadsheet calculation and DEPCOST illustration for change 4




cost

|

EERMTBUR

—&—GRAND
TOTAL

COSsT

737-300,400,500

total cost
$80,696

IMTBURILN" 166

0

prsov

89.135

ch5

TS MT2E Py

MTBFn-i  MTBURI-u failratei-un
.36 4

0 o]

0 0

0

0.877104 1344431 11.9864 83427.88 95117.413 10.51332

cCooCoCoo
[=NoR=NoNeNa)

% of FR__ftailrateperind

100000
90000
80000
70000
60000
2 500
@ 00
= 40000
30000
20000
- 10000
0
> o S o} c X
o £ %3 % § 323 35 %
(%) (2] a8} (7] Kl
¢ T £ 2 a &
a O I
o
LRU
LRU fail rate MTBF PC LLHPR SLHPR
hpsov 13.882 72035.73 0.0013882 4.5 4.64
prsov 89.135 11218.94 0.0089135 3.05 464
pclr 8.804 113584.7 0.0008804 4 10
duct 45 455 21999.78 0.0045455 4 2 i=
famv 29.578 33808.91 0.0029578 7.66 8.92
check 1.34 746268.7 0.000134 4 1.8
HSreg 37.67 26546.32 0.003767 3.13 5.38
PCLRsensor  16.805 58506.1 0.0016805 2.24 1.53
Breg 43.077 23214.24 0.0043077 9.94 538
Thermo 9.058 110399.6 0.0009058 4.15 138
sumFRsporind  #of candidates PCHPRI normatk  iaikateind* 166 sum FRRERy =z
indication candidates failrateind Ci PDi MTBFind failraten-i
1 hprH,B 70.85485 4 0.470195 14173. X
13 hH 4.4611 2 224160
2 hpedeHP.BT 81967 8 12200.03
23 diPpr 743809 4
24 pe.d 58661 2 170471
245 pe.d 2.24405 2 445622.9
25 pe.d 13493 2 741125
3 a7 9.0613 2 110359.4
4 ped 271295 2 368602.4
S5 a1pP 33.83175 3 29558.03
LRU indication % Of FR__failrateperi LRU indication
hpsov 1 25 3.4705 famv
13 5 0.6941 23
2 70 97174 5
prsov 1 30 26.7405 check 2
23 70 62.3945 HSreg 1
pelr 2 65 5.7226 13
24 15 1.3206 2
245 10 0.8804 PCLRsen 2
R 25 5 0.4402 23
4 5 0.4402 5
duct 2 70 31.8185 Breg 1
23 5 2.27275 2
24 10 4.5455 Thermo 2
245 3 1.36365 3
25 2 0.9091
3 2 0.9091
4 5 227275
5 3 1.36365
Totals
sum FRn- column VT FRni * 106 sum FRiu colmn 1FRIU 106 MTBF|

Figure C6. Spreadsheet calculation and DEPCOST illustration for change 5

Tot Failrate n-i_Tot MTBF n-i failratei-un MTBUR i-un MTBUR i-j
56.10075 17825.0736398355 31.25566 31994.201

11218.94

Predicted

WMTBURIN AMTBUR))

MTBUR i

Historical MTBUR i

8306.29192

5394

30 88734
70 207046
100 1.34
45  16.9515
10 3.767
35 13.1845
25 420125
5 0.84025
70 11.7635
55 23.69235
35 15.07695
10 0.9058
9% 81522

[oNoNoNoNoNe)
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100000
90000 total cost
80000 $75,293
70000
zr 60000
2 %
E 50000 o
©
= . 40000
30000
B MTBUR
20000
- 10000
0 —o— GRAND
o o o C X
8 £ 325335 3 TOTAL
w o) m 172]
© T x & 2 & &
o (o] xI
o
LRU
LRU fail rate MTBF ___ PC LLHPR _ SLHPR
hpsov 13.882 7203573 0.0013882 4.5 464 737-300,400,500
prsov 89.135 11218.94 0.00839135 3.05 4.64
pelr 8.804 113584.7 0.0008804 4 10 prsov
duct 45,455 21999.78 0.0045455 4 2 i= 89.135
famv 29.578 33808.91 0.0029578 7.66 8.92
check 1.34 746268.7 0.000134 4 1.8
HSreg 37.67 26546.32 0.003767 3.13 5.38 ché
PCLRsensor 16.805 59506.1 0.0016805 2.24 1.63
Breg 43.077 23214.24 0.0043077 9.94 5.38
Thermo 9.058 110399.6 0.0009058 4.15 1.39
sumFRsperind ¥ of candidates PCUHPRI nommakz Maikateind”™ 166 sum 7= “€on. MITFPDL AMTBURIUN" 166

failrateini

Indication

candidates

i MTBURI-u
48270.

failratei-un

hprHB .
136 hH 44611 2
2 hpcdcHPBT 81.967 8
236 dp 3.113 2
24 pe.d 5.8661 2
245 pc.d 224405 2
25 pe.d 13493 2
36 47 9.0613 2
4 pe.d 271295 2
5 d,p 13.12715 2
26 pr 623945 1 1
57 f 20.7046 1
LRU indication % of FR__failrateperind
hpsov 1 25 3.4705
N 136 5 0.6941
2 70 9.7174
prsov 1 30 26.7405
26 70 62.3945
pelr 2 65 57226
24 15 1.3206
245 10 0.8804
25 5 0.4402
4 5 0.4402
duct 2 70 31.8185
236 5 227275
24 10 4.5455
245 3 1.36365
25 2 0.9091
36 2 0.9091
4 5 2.27275
5 3 1.36365
Totals
sum FRn-i column Tt FRn- *1e6 sum FRw column  1FRiu 106 MTBFi
Tot Faiirate n-i  Tot MTBF n-i failratei-un MTBUR i-un' MTBUR i
44.11435 22668.360748827 20.74234 48210.564 11218.94

N AMTBURuN+ 1MTBUR}}
Predicted MTBUR i
9101.0574

4 4 O R
224160 0 0 0
12200 0 0 o]
321234 0 [§] 0
170471 0 0 Q
445623 0 0 0
741125 o] 0 0
110359 o] 0 [¢]
368602 0 0 0
76178 0 0 0
16027.1 oo 0 0
48298.4
LRU indication % of FR__fairateperind
famv 23 25 7.3945

2368 5 1.4789

57 70 20.7046

check 2 100 1.34
HSreg 1 45 16.9515
136 10 3.767

2 35 13.1845

PCLRsen 2 25 420125
236 5 0.84025

5 70 11.7635

Breg 1 55 23.69235
2 35 15.07695

Thermo 2 10 0.9058
36 90 8.1522

Historicat MTBUR i

5394

Figure C7. Spreadsheet calculation and DEPCOST illustration for change 6




100000
90000 total cost
80000 $71,715
70000
o 60000
B 50000 g
E g
= 40000
30000
20000 B MTBUR
. 10000 {
0 - | ——GRAND
> o b o c > > o X !
O % 3 ,% g = 0 3 [ i TOTAL
r T I - | cost
o O I
o
LRU
LRU fail rate MTBF PC {LHPR SLHPR
hpsov 13.882 72035.73 0.0013882 4.5 464 737-300,400,500
prsov 89.135 11218.94 0.0089135 3.05 4.64
pelr 8.804 113584.7 0.0008804 4 10 prsov
duct 45.455 21999.78 0.0045455 4 2 i= 89.135
famv 29.578 33808.91 0.0029578 7.66 892
check 1.34 746268.7 0.000134 4 1.8
kiSreg 37.67 26546.32 0.003767 3.13 5.38 ch7
PCLRsensor  16.805 59506.1 0.0016805 2.24 1.53
Breg 43.077 23214.24 0.0043077 9.94 5.38
Thermo 9.058 110399.6 0.0009058 4.15 1.39
S FRsperind  #of candidates PCiHPRI nomakz 1Aakatenc” 146 sum FRAFRING €22 MTBZ nuPDr AMTBURIL" 106
Indication candidates failrateind Ci PDi MTBFind failraten-i MTBFn-i MTBURIi-u failratei-un
1 hH.B 4411435 3 22668.4 [ 0 [1]
136 hH 44611 2 224160 0 0 0
2 hpc,d,c,HP.BT 81.967 8 12200 0 0 0
236 dp 3.113 2 321234 0 0 4}
24 ped 5.8661 2 170471 o} 0 0
245 pe.d 224405 2 445623 0 0 0
25 pcd 1.3493 2 741125 0 0 0
36 a7 9.0613 2 110359 [0} 0 0
4 pe.d 271295 2 368602 0 [¢] 0
5 dp 13.12715 2 76178 0 0 0
26 pr 62,3945 1 1 16027.1 00 0 0
57 f 20.7046 1 48298.4
LRU indication % of FR__failrateperind LLRU indication % of FR _faiirateperind
hpsov 1 25 3.4705 famv 27 25 7.3945 not listed
~ 136 5 0.6941 2367 5 1.4788
2 70 9.7174 57 70  20.7046
prsov 16 30 26.7405 check 2 100 1.34
26 70  62.3945 HSreg 1 45 16.9515
pelr 2 65 5.7226 136 10 3.767
24 15 1.3206 2 35 13.1845
245 10 0.8804 PCLRsen 2 25 4.20125
25 5 0.4402 236 5 0.84025
4 5 0.4402 5 70 11.7635
duct 2 70 31.8185 Breg 1 55 23.69235
236 5 227275 2 35 15.07695
24 10 45455 Thermo 2 10 0.9058
245 3 1.36365 36 90 8.1522
25 2 0.9091
36 2 0.9091
4 5 227275
5 3 1.36365
Totals
sum FRn-i coksmn Tt FRni 166 sum FRw corn 1FRiu* 106 MTBFi

Tot Failrate n-i_Tot MTBF n-i

failratei-un MTBUR i-un MTBUR i

0

Figure C8. Spreadsheet calculation and DEPCOST illustration for change 7

N/A

0

N/A

11218.94

A IMTBURu IMTBUR])

Predicted MTBUR i

11218.938

Historical MTBUR i
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